zoukankan      html  css  js  c++  java
  • PAT 1123 Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

    F1.jpg F2.jpg
    F3.jpg F4.jpg

    Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

    Input Specification:
    Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:
    For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

    Sample Input 1:
    5
    88 70 61 63 65

    Sample Output 1:
    70 63 88 61 65
    YES

    Sample Input 2:
    8
    88 70 61 96 120 90 65 68

    Sample Output 2:
    88 65 96 61 70 90 120 68
    NO

    #include<iostream>
    #include<math.h>
    #include<queue>
    using namespace std;
    struct node{
    	int value, depth;
    	node* l=NULL;
    	node* r=NULL;
    	node(int v): value(v), depth(0), l(NULL), r(NULL){
    	}
    };
    int getheight(node* root){
    	return root==NULL?0:max(getheight(root->l), getheight(root->r))+1;
    }
    
    node* RotationLL(node* root){
    	node* temp=root->l;
    	root->l=temp->r;
    	temp->r=root;
    	temp->depth=getheight(temp);
    	root->depth=getheight(root);
    	return temp;
    } 
    
    node* RotationRR(node* root){
    	node* temp=root->r;
    	root->r=temp->l;
    	temp->l=root;
    	temp->depth=getheight(temp);
    	root->depth=getheight(root);
    	return temp;
    }
    
    node* RotationLR(node* root){
        root->l=RotationRR(root->l); 
    	return RotationLL(root);
    }
    
    node* RotationRL(node* root){
    	root->r=RotationLL(root->r);
    	return RotationRR(root);
    }
    
    node* insert(node* root, int val){
    	if(root==NULL){
    		root=new node(val);
    		return root;
    	}else if(val<root->value){
    		root->l=insert(root->l, val);
    		if(getheight(root->l)-getheight(root->r)==2)
    			if(val<root->l->value)
    				root=RotationLL(root);
    			else
    				root=RotationLR(root);
    			
    	}else{
    		root->r=insert(root->r, val);
    		if(getheight(root->l)-getheight(root->r)==-2)
    			if(val<root->r->value)
    				root=RotationRL(root);
    			else
    				root=RotationRR(root);
    	}
    	root->depth=getheight(root);
    	return root;
    }
    int main(){
    	int n, flag=0, ans=0, first=0;
    	cin>>n;
    	node* root=NULL;
    	for(int i=0; i<n; i++){
    		int val;
    		cin>>val;
    		root=insert(root, val);
    	}
    	queue<node*> q;
    	q.push(root);
    	while(!q.empty()){
    		node* temp=q.front();
    		first++==0?cout<<temp->value:cout<<" "<<temp->value;
    		q.pop();
    		if(temp->l!=NULL){
    			q.push(temp->l);
    			flag==1?ans=1:ans=ans;
    		}
    		else
    			flag=1;
    		if(temp->r!=NULL){
    			q.push(temp->r);
    			flag==1?ans=1:ans=ans;
    		}	
    		else
    			flag=1;
    	}
    	cout<<endl;
    	ans==1?cout<<"NO"<<endl:cout<<"YES"<<endl;
    	return 0;
    }
    
  • 相关阅读:
    接口隔离原则(Interface Segregation Principle)ISP
    依赖倒置(Dependence Inversion Principle)DIP
    里氏替换原则(Liskov Substitution Principle) LSP
    单一指责原则(Single Responsibility Principle) SRP
    《面向对象葵花宝典》阅读笔记
    智能手表ticwatch穿戴体验
    我所理解的软件工程
    RBAC基于角色的权限访问控制
    程序员健康指南阅读笔记
    我晕倒在厕所了
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/9506455.html
Copyright © 2011-2022 走看看