哥国杀
题目描述
《哥国杀》是一款热门的桌上游戏,牌堆中的牌数量是无穷大的,并且每一张牌的点数都在 ([1,A]) 中均匀随机。可惜有一个妹妹(是谁就不用我多说了)混入了游戏,她的独有技如下:
称哥:你可以亮出牌堆顶的 (n) 张牌,然后获得任意点数不大于 (m) 的牌,将剩余牌放入弃牌堆,你会选择获得牌数最多的策略。
现在询问发动“称哥”期望能获得多少张牌,答案对 (998244353) 取模。
(1leq nleq 100,1leq m,Aleq 1000)
解法
暴力背包可以做到 (O(n^2mA)),这个就不需要多说了吧,精细化实现可以做到 (O(nmAlog m))
更好的方法是算贡献,我们计算所有情况下牌数的总和,我们考虑已经选了 (i) 张牌,现在准备选 (k) 张权值为 (j) 的牌。我们首先考虑计算以前的数列有多少种方案数,也就是我们要把小于等于 (j-1) 的牌填 (i) 个进长度为 (n) 的数列,可以使用容斥 (+) 隔板法(因为是至少所有要多加一球一板):
然后考虑剩下位置的方案数,我们枚举真实情况下填了 (t) 个权值为 (j) 的牌,剩下的幂次任意填即可:
总的式子也写一下吧,在组合数为 (0) 时候跳出,时间复杂度 (O(n^2Alog A)):
#include <cstdio>
#include <iostream>
using namespace std;
const int M = 1005;
const int MOD = 998244353;
#define int long long
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,m,A,ans,fac[M],inv[M];
void init(int n)
{
fac[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%MOD;
for(int i=2;i<=n;i++) inv[i]=inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=2;i<=n;i++) inv[i]=inv[i-1]*inv[i]%MOD;
}
int C(int n,int m)
{
if(n<m || m<0) return 0;
return fac[n]*inv[m]%MOD*inv[n-m]%MOD;
}
int qkpow(int a,int b)
{
int r=1;
while(b>0)
{
if(b&1) r=r*a%MOD;
a=a*a%MOD;
b>>=1;
}
return r;
}
void add(int &x,int y) {x=(x+y)%MOD;}
signed main()
{
freopen("legend.in","r",stdin);
freopen("legend.out","w",stdout);
n=read();m=read();A=read();
init(1000);
for(int i=0;i<=n;i++)
for(int j=1;j<=A;j++)
for(int k=1;k<=n-i;k++)
{
int f=0,g=0;
for(int t=0;t<=i;t++)
{
int z=(t&1)?MOD-1:1;
f=(f+z*C(i,t)%MOD*C(m-j*k-t*(j-1),i))%MOD;
}
if(f==0) break;
for(int t=k;t<=n;t++)
g=(g+C(n-i,t)*qkpow(A-j,n-i-t))%MOD;
g=g*C(n,i)%MOD;
ans=(ans+f*g)%MOD;
}
ans=ans*qkpow(qkpow(A,n),MOD-2)%MOD;
printf("%lld
",ans);
}
数树
题目描述
给定两棵树 (T1,T2),求 (T1) 有多少个连通块和 (T2) 同构,答案对 (998244353) 取模。
(nleq 3000,mleq10)
解法一
考试时候我打的爆搜是枚举 (T1) 中哪些点存在然后和 (T2) 用树哈希判断重构。
那么可以套上 (dp) 来解决枚举的问题,我充分发扬人类智慧,把哈希值当作下标,然后做树背包即可。用树哈希的计算方法来转移,为了让它跑得快在背包结束的时候我们只保留 (T2) 中可能的哈希子树的哈希值,时间复杂度跑得非常快(因为出题人根本没有想到有伞兵打这个阴间东西)!
解法二
上面的方法仅供取乐,正确的做法是把 (T2) 状压,在 (T1) 上 (dp)
设 (dp[u][s]) 表示 (u) 的子树和 (T2) 的 (s) 集合对应的方案数,转移我们钦定 (u) 和 (T2) 的一个点对应,并且把它当作 (T2) 的根。那么转移就要把 (T1) 的子树对应到 (T2) 的子树上面去,就获得了子问题,设 (w[x][y]) 为 (T2) 以 (x) 的根 (y) 的子树集合,那么转移:
最后要去重,因为 (T2) 每一种可能的标号方式都会被我们计算一遍(全排搜一下可能的标号方式)
//hash from me
#include <cstdio>
#include <vector>
#include <algorithm>
#include <map>
using namespace std;
const int MOD = 998244353;
const int M = 3005;
const int C = 23;
#define ull unsigned long long
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,m,cnt,ans,vis[M],p[M],siz[M];
vector<int> g1[M],g2[M];ull hs[M];
map<ull,int> dp[M],mp,sz,ok;
void add(int &x,int y) {x=(x+y)%MOD;}
void init(int n)
{
for(int i=2;i<=n;i++)
{
if(!vis[i]) p[++cnt]=i;
for(int j=1;j<=cnt && i*p[j]<=n;j++)
{
vis[i*p[j]]=1;
if(i%p[j]==0) break;
}
}
}
void dfs2(int u,int fa)
{
hs[u]=siz[u]=1;
for(auto v:g2[u])
{
if(v==fa) continue;
dfs2(v,u);
siz[u]+=siz[v];
hs[u]+=hs[v]*p[siz[v]+C];
}
mp[hs[u]]=1;
sz[hs[u]]=siz[u]+C;
}
void dfs1(int u,int fa)
{
dp[u][1]=1;
for(auto v:g1[u])
{
if(v==fa) continue;
dfs1(v,u);
map<ull,int> tmp=dp[u];
for(auto x:tmp)
for(auto y:dp[v])
{
ull h=x.first+y.first*p[sz[y.first]];
add(dp[u][h],1ll*x.second*y.second%MOD);
}
}
vector<ull> rnm;
for(auto x:dp[u]) if(!mp[x.first])
rnm.push_back(x.first);
while(!rnm.empty())
dp[u].erase(rnm.back()),rnm.pop_back();
}
int main()
{
freopen("count.in","r",stdin);
freopen("count.out","w",stdout);
n=read();
for(int i=1;i<n;i++)
{
int u=read(),v=read();
g1[u].push_back(v);
g1[v].push_back(u);
}
m=read();
for(int i=1;i<m;i++)
{
int u=read(),v=read();
g2[u].push_back(v);
g2[v].push_back(u);
}
//initialize for all the possible hash value
init(1000);
for(int i=1;i<=m;i++)
{
dfs2(i,0);
ok[hs[i]]=1;
}
dfs1(1,0);
for(auto x:ok) for(int i=1;i<=n;i++)
add(ans,dp[i][x.first]);
printf("%d
",ans);
}
//dp
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <cassert>
using namespace std;
const int N = 11;
const int M = 3005;
const int MOD = 998244353;
#define int long long
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,m,k,a[N][N],ea[N],eb[N],p[N],w[N][N];
int ans,f[M][1<<10],dp[2][1<<10];vector<int> g[M];
void add(int &x,int y) {x=(x+y)%MOD;}
int qkpow(int a,int b)
{
int r=1;
while(b>0)
{
if(b&1) r=r*a%MOD;
a=a*a%MOD;
b>>=1;
}
return r;
}
int dfs2(int u,int fa)
{
int r=1<<u-1;
for(int v=1;v<=m;v++)
if(a[u][v] && v^fa)
r|=dfs2(v,u);
return r;
}
void dfs(int u,int fa)
{
for(auto v:g[u]) if(v^fa) dfs(v,u);
for(int x=1;x<=m;x++)
{
int o=0;memset(dp,0,sizeof dp);
dp[o][1<<x-1]=1;
for(int v:g[u]) if(v^fa)
{
for(int s=1;s<(1<<m);s++)
dp[o^1][s]=dp[o][s];
for(int y=1;y<=m;y++)
if(a[x][y] && f[v][w[x][y]])
for(int s=1;s<(1<<m);s++)
{
if(s&(1<<y-1)) continue;
add(dp[o^1][s|w[x][y]],dp[o][s]
*f[v][w[x][y]]%MOD);
}
o^=1;
}
for(int s=1;s<(1<<m);s++)
add(f[u][s],dp[o][s]);
}
add(ans,f[u][(1<<m)-1]);
}
signed main()
{
freopen("count.in","r",stdin);
freopen("count.out","w",stdout);
n=read();
for(int i=1;i<n;i++)
{
int u=read(),v=read();
g[u].push_back(v);
g[v].push_back(u);
}
m=read();
for(int i=1;i<m;i++)
{
ea[i]=read();eb[i]=read();
a[ea[i]][eb[i]]=a[eb[i]][ea[i]]=1;
}
for(int i=1;i<=m;i++) p[i]=i;
do//cal the essence-same tree
{
int fl=0;
for(int i=1;i<m;i++)
fl+=a[p[ea[i]]][p[eb[i]]]==0;
if(!fl) k++;
}while(next_permutation(p+1,p+1+m));
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
w[i][j]=dfs2(j,i);
dfs(1,0);
printf("%lld
",ans*qkpow(k,MOD-2)%MOD);
}