题意:
小a有 (n) 个数,他提出了一个很有意思的问题:他想知道对于任意的 (x), (y),能否将 (x) 与这 (n) 个数中的任意多个数异或任意多次后变为 (y) 。
分析:
题目显然就是求:(x)(oplus)(a[i])(oplus)(a[j])(oplus)(a[k])(oplus)(...)(=y)。
将这个式子移项得:(a[i])(oplus)(a[j])(oplus)(a[k])(oplus)(...)(=)(x)(oplus)(y)。
所以就是在原序列的线性基判断是否能异或出 (x) (oplus) (y),即能否插入 (x)(oplus)(y) 的问题。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 2e5 + 5;
struct Base {
int tot, flag;
LL d[66], nd[66];
void init() {
tot = flag = 0;
memset(d, 0, sizeof d);
memset(nd, 0, sizeof nd);
}
bool ins(LL x) {
for (int i = 62; ~i; i--) {
if (x & (1LL << i)) {
if (d[i]) {
x ^= d[i];
} else {
d[i] = x;
return true;
}
}
}
flag = 1;
return false;
}
bool canIns(LL x) {
for (int i = 62; ~i; i--) {
if (x & (1LL << i)) {
if (d[i]) {
x ^= d[i];
} else {
return true;
}
}
}
return false;
}
LL queryMax() {
LL ans = 0;
for (int i = 62; ~i; i--) ans = max(ans, ans ^ d[i]);
return ans;
}
LL queryMin() {
for (int i = 0; i <= 62; i++) if (d[i]) return d[i];
return -1LL;
}
void rebuild() {
for (int i = 62; ~i; i--) {
for (int j = i - 1; ~j; j--) {
if (d[i] & (1LL << j)) d[i] ^= d[j];
}
}
for (int i = 0; i <= 62; i++) if (d[i])
nd[tot++] = d[i];
}
LL kth(LL k) {
if (flag) k--;
if (!k) return 0LL;
if (k >= (1LL << tot)) return -1LL;
LL ans = 0;
for (int i = 62; ~i; i--) {
if (k & (1LL << i)) ans ^= nd[i];
}
return ans;
}
void merge(Base b) {//与b取并集
for (int i = 62; ~i; i--) if (b.d[i])
ins(b.d[i]);
}
Base mixed(Base B) {//与b取交集
Base All, C, D;
All.init(), C.init(), D.init();
for (int i = 62; ~i; i--) {
All.d[i] = d[i];
D.d[i] = 1LL << i;
}
for (int i = 62; ~i; i--) {
if (B.d[i]) {
LL v = B.d[i], k = 0;
bool can = true;
for (int j = 62; ~j; j--) {
if (v & (1LL << j)) {
if (All.d[j]) {
v ^= All.d[j];
k ^= D.d[j];
} else {
can = false;
All.d[j] = v;
D.d[j] = k;
break;
}
}
}
if (can) {
LL v = 0;
for (int j = 62; ~j; j--) {
if (k & (1LL << j)) {
v ^= d[j];
}
}
C.ins(v);
}
}
}
return C;
}
} lb;
int n, w, q, x, y;
int main() {
scanf("%d", &n);
lb.init();
for (int i = 1; i <= n; i++) {
scanf("%d", &w);
lb.ins(w);
}
scanf("%d", &q);
while (q--) {
scanf("%d %d", &x, &y);
if (lb.canIns(x ^ y)) puts("NO");
else puts("YES");
}
return 0;
}