zoukankan      html  css  js  c++  java
  • HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015

    233 Matrix

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2805    Accepted Submission(s): 1611


    Problem Description
    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a0,1 = 233,a0,2 = 2333,a0,3 = 23333...) Besides, in 233 matrix, we got ai,j = ai-1,j +ai,j-1( i,j ≠ 0). Now you have known a1,0,a2,0,...,an,0, could you tell me an,m in the 233 matrix?
     
    Input
    There are multiple test cases. Please process till EOF.

    For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 109). The second line contains n integers, a1,0,a2,0,...,an,0(0 ≤ ai,0 < 231).
     
    Output
    For each case, output an,m mod 10000007.
     
    Sample Input
    1 1 1 2 2 0 0 3 7 23 47 16
     
    Sample Output
    234 2799 72937
    Hint
     
    Source
     
    Recommend
    hujie

    题解:

    假设n = 4,则矩阵中第0列元素为:

    a[0][0]

    a[1][0]

    a[2][0]

    a[3][0]

    a[4][0]

    根据递推,第1列为:

    a[0][1] = a[0][1]

    a[1][1] = a[0][1] + a[1][0]

    a[2][1] = a[0][1] + a[1][0] + a[2][0]

    a[3][1] = a[0][1] + a[1][0] + a[2][0] + a[3][0]

    a[4][1] = a[0][1] + a[1][0] + a[2][0] + a[3][0] + a[4][0]

    第m列为:

    a[0][m] = a[0][m]

    a[1][m] = a[0][m] + a[1][m-1]

    a[2][m] = a[0][m] + a[1][m-1] + a[2][m-1]

    a[3][m] = a[0][m] + a[1][m-1] + a[2][m-1] + a[3][m-1]

    a[4][m] = a[0][m] + a[1][m-1] + a[2][m-1] + a[3][m-1]+ a[4][m-1]

    可发现当前一列可直接由上一列递推出来,因此构造矩阵:

    代码如下:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <cmath>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 using namespace std;
    13 typedef long long LL;
    14 const int INF = 2e9;
    15 const LL LNF = 9e18;
    16 const int MOD = 10000007;
    17 const int MAXN = 1e6+100;
    18 
    19 const int Size = 12;
    20 struct MA
    21 {
    22     LL mat[12][12];
    23     void init()
    24     {
    25         for(int i = 0; i<Size; i++)
    26         for(int j = 0; j<Size; j++)
    27             mat[i][j] = (i==j);
    28     }
    29 };
    30 
    31 MA mul(MA x, MA y)
    32 {
    33     MA ret;
    34     memset(ret.mat, 0, sizeof(ret.mat));
    35     for(int i = 0; i<Size; i++)
    36     for(int j = 0; j<Size; j++)
    37     for(int k = 0; k<Size; k++)
    38         ret.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j])%MOD, ret.mat[i][j] %= MOD;
    39     return ret;
    40 }
    41 
    42 MA qpow(MA x, LL y)
    43 {
    44     MA s;
    45     s.init();
    46     while(y)
    47     {
    48         if(y&1) s = mul(s, x);
    49         x = mul(x, x);
    50         y >>= 1;
    51     }
    52     return s;
    53 }
    54 
    55 int main()
    56 {
    57     LL n, m, a[15];
    58     while(scanf("%lld%lld",&n,&m)!=EOF)
    59     {
    60 
    61         for(int i = 1; i<=n; i++)
    62             scanf("%lld", &a[i]);
    63         a[0] = 23; a[n+1] = 3;
    64 
    65         MA s;
    66         memset(s.mat, 0, sizeof(s.mat));
    67         for(int i = 0; i<=n; i++)
    68         {
    69             s.mat[i][0] = 10;
    70             s.mat[i][n+1] = 1;
    71             for(int j = 1; j<=i; j++)
    72                 s.mat[i][j] = 1;
    73         }
    74         s.mat[n+1][n+1] = 1;
    75 
    76         s = qpow(s, m);
    77         LL ans = 0;
    78         for(int i = 0; i<=n+1; i++)
    79             ans += 1LL*a[i]*s.mat[n][i]%MOD, ans %= MOD;
    80 
    81         printf("%lld
    ", ans);
    82     }
    83 }
    View Code
  • 相关阅读:
    MT【139】公比为有理数
    鼠标右键怎么清除Catalyst Control Center
    人脸识别技术框架
    Qt生成灰度图(转载)
    人脸识别必读的N篇文章
    QT+vs2010下改变可执行程序的图标
    内部排序技术
    ubuntu下配置qt+opengl+opencv
    HOG算子
    基于HOG特征的Adaboost行人检测
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/8413387.html
Copyright © 2011-2022 走看看