zoukankan      html  css  js  c++  java
  • HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015

    233 Matrix

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2805    Accepted Submission(s): 1611


    Problem Description
    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a0,1 = 233,a0,2 = 2333,a0,3 = 23333...) Besides, in 233 matrix, we got ai,j = ai-1,j +ai,j-1( i,j ≠ 0). Now you have known a1,0,a2,0,...,an,0, could you tell me an,m in the 233 matrix?
     
    Input
    There are multiple test cases. Please process till EOF.

    For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 109). The second line contains n integers, a1,0,a2,0,...,an,0(0 ≤ ai,0 < 231).
     
    Output
    For each case, output an,m mod 10000007.
     
    Sample Input
    1 1 1 2 2 0 0 3 7 23 47 16
     
    Sample Output
    234 2799 72937
    Hint
     
    Source
     
    Recommend
    hujie

    题解:

    假设n = 4,则矩阵中第0列元素为:

    a[0][0]

    a[1][0]

    a[2][0]

    a[3][0]

    a[4][0]

    根据递推,第1列为:

    a[0][1] = a[0][1]

    a[1][1] = a[0][1] + a[1][0]

    a[2][1] = a[0][1] + a[1][0] + a[2][0]

    a[3][1] = a[0][1] + a[1][0] + a[2][0] + a[3][0]

    a[4][1] = a[0][1] + a[1][0] + a[2][0] + a[3][0] + a[4][0]

    第m列为:

    a[0][m] = a[0][m]

    a[1][m] = a[0][m] + a[1][m-1]

    a[2][m] = a[0][m] + a[1][m-1] + a[2][m-1]

    a[3][m] = a[0][m] + a[1][m-1] + a[2][m-1] + a[3][m-1]

    a[4][m] = a[0][m] + a[1][m-1] + a[2][m-1] + a[3][m-1]+ a[4][m-1]

    可发现当前一列可直接由上一列递推出来,因此构造矩阵:

    代码如下:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <cmath>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 using namespace std;
    13 typedef long long LL;
    14 const int INF = 2e9;
    15 const LL LNF = 9e18;
    16 const int MOD = 10000007;
    17 const int MAXN = 1e6+100;
    18 
    19 const int Size = 12;
    20 struct MA
    21 {
    22     LL mat[12][12];
    23     void init()
    24     {
    25         for(int i = 0; i<Size; i++)
    26         for(int j = 0; j<Size; j++)
    27             mat[i][j] = (i==j);
    28     }
    29 };
    30 
    31 MA mul(MA x, MA y)
    32 {
    33     MA ret;
    34     memset(ret.mat, 0, sizeof(ret.mat));
    35     for(int i = 0; i<Size; i++)
    36     for(int j = 0; j<Size; j++)
    37     for(int k = 0; k<Size; k++)
    38         ret.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j])%MOD, ret.mat[i][j] %= MOD;
    39     return ret;
    40 }
    41 
    42 MA qpow(MA x, LL y)
    43 {
    44     MA s;
    45     s.init();
    46     while(y)
    47     {
    48         if(y&1) s = mul(s, x);
    49         x = mul(x, x);
    50         y >>= 1;
    51     }
    52     return s;
    53 }
    54 
    55 int main()
    56 {
    57     LL n, m, a[15];
    58     while(scanf("%lld%lld",&n,&m)!=EOF)
    59     {
    60 
    61         for(int i = 1; i<=n; i++)
    62             scanf("%lld", &a[i]);
    63         a[0] = 23; a[n+1] = 3;
    64 
    65         MA s;
    66         memset(s.mat, 0, sizeof(s.mat));
    67         for(int i = 0; i<=n; i++)
    68         {
    69             s.mat[i][0] = 10;
    70             s.mat[i][n+1] = 1;
    71             for(int j = 1; j<=i; j++)
    72                 s.mat[i][j] = 1;
    73         }
    74         s.mat[n+1][n+1] = 1;
    75 
    76         s = qpow(s, m);
    77         LL ans = 0;
    78         for(int i = 0; i<=n+1; i++)
    79             ans += 1LL*a[i]*s.mat[n][i]%MOD, ans %= MOD;
    80 
    81         printf("%lld
    ", ans);
    82     }
    83 }
    View Code
  • 相关阅读:
    Windows下Yarn安装与使用
    Node.js安装及环境配置之Windows篇
    sharding-jdbc—分片策略:Inline行表达式分片策略InlineShardingStrategy(2)
    sharding-jdbc—分片策略:标准分片策略StandardShardingStrategy(1)
    sharding-jdbc—分片策略(总)
    ShardingJdbc 数据脱敏
    ShardingJdbc 数据分布式事务
    Spring Boot整合Sharding-JDBC实现分库分表+读写分离org.apache.shardingsphere+mybatis-plus(4)
    jenkins docker
    nps 使用
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/8413387.html
Copyright © 2011-2022 走看看