zoukankan      html  css  js  c++  java
  • poj3264

                                                                                             Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 28628   Accepted: 13468
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<string>
    #include<cstdio>
    using namespace std;
    int n,dmax[100005][22],dmin[100005][22],a[100005];
    int max(int a,int b)
    {
        return a > b? a:b;
    }
    int min(int a,int b)
    {
        return a<b ? a:b;
    }
    //模板
    void RMQ_init() { int i,j; for(i=1;i<=n;i++) { dmax[i][0] = a[i]; dmin[i][0] = a[i]; } for(j=1;(1<<j)<=n;j++) { for(i=1;i+j-1<=n;i++) { dmin[i][j] = min(dmin[i][j-1],dmin[i+(1<<(j-1))][j-1]); dmax[i][j] = max(dmax[i][j-1],dmax[i+(1<<(j-1))][j-1]); } } } int RMQ(int l,int r) { int k =0 ; while((1<<(k+1))<=r-l+1) k++; int sum1 = max(dmax[l][k],dmax[r-(1<<k)+1][k]); int sum2 = min(dmin[l][k],dmin[r-(1<<k)+1][k]); return sum1 - sum2; }
    //
    int main() { int m,i; while(scanf("%d %d",&n,&m)!=EOF) { int x,y; for(i=1;i<=n;i++) { scanf("%d",&a[i]); } RMQ_init(); for(i=0;i<m;i++) { scanf("%d %d",&x,&y); int sum = RMQ(x,y); printf("%d ",sum); } } return 0; }
  • 相关阅读:
    linkedLoop
    loopqueue
    expect 切换用户
    二叉树的实现
    栈的链表实现, 底层使用链表
    栈的数组实现
    RSA加密算法
    输入一个链表,反转链表后,输出链表的所有元素
    输入一个链表,输出该链表中倒数第k个结点
    ansible中include_tasks和import_tasks
  • 原文地址:https://www.cnblogs.com/Deng1185246160/p/3247531.html
Copyright © 2011-2022 走看看