zoukankan      html  css  js  c++  java
  • poj3264

                                                                                             Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 28628   Accepted: 13468
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<string>
    #include<cstdio>
    using namespace std;
    int n,dmax[100005][22],dmin[100005][22],a[100005];
    int max(int a,int b)
    {
        return a > b? a:b;
    }
    int min(int a,int b)
    {
        return a<b ? a:b;
    }
    //模板
    void RMQ_init() { int i,j; for(i=1;i<=n;i++) { dmax[i][0] = a[i]; dmin[i][0] = a[i]; } for(j=1;(1<<j)<=n;j++) { for(i=1;i+j-1<=n;i++) { dmin[i][j] = min(dmin[i][j-1],dmin[i+(1<<(j-1))][j-1]); dmax[i][j] = max(dmax[i][j-1],dmax[i+(1<<(j-1))][j-1]); } } } int RMQ(int l,int r) { int k =0 ; while((1<<(k+1))<=r-l+1) k++; int sum1 = max(dmax[l][k],dmax[r-(1<<k)+1][k]); int sum2 = min(dmin[l][k],dmin[r-(1<<k)+1][k]); return sum1 - sum2; }
    //
    int main() { int m,i; while(scanf("%d %d",&n,&m)!=EOF) { int x,y; for(i=1;i<=n;i++) { scanf("%d",&a[i]); } RMQ_init(); for(i=0;i<m;i++) { scanf("%d %d",&x,&y); int sum = RMQ(x,y); printf("%d ",sum); } } return 0; }
  • 相关阅读:
    函数、包和错误处理
    程序流程控制
    poj 2515 Birthday Cake
    poj 2094 多项式求和。
    hdu 3625 第一类striling 数
    hdu 4372 第一类stirling数的应用/。。。好题
    poj 1845 Sumdiv
    hdu 3641 Treasure Hunting 强大的二分
    poj 3335 /poj 3130/ poj 1474 半平面交 判断核是否存在 / poj1279 半平面交 求核的面积
    hdu 2841 Visible Trees
  • 原文地址:https://www.cnblogs.com/Deng1185246160/p/3247531.html
Copyright © 2011-2022 走看看