题意:
给出$DAG$,询问删掉哪个点之后最长路径最短
思路:
我们令$f[x]$表示从最远的点到达它的距离,$g[x]$表示它能够到达最远的点的距离
那么对于$(x -> y)$一条边来说,它所在的最长路径就是 $f[x] + 1 + g[y]$
我们按照拓扑序依次删点
我们发现此时删去一个点,那么可能存在的最长的路径是
和它同一层的点所在的路径,以及它前一层的点所在的路径,以及它后一层的点所在的路径
因为它只会影响到它前一层的点和后一层的点
那么我们删去它所有入边的贡献,以及它本身的$g[x]$的贡献
再更新答案后
我们加入它出边的贡献,以及它本身的$f[x]$的贡献
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define N 500010 5 int n, m; 6 vector <int> G[2][N]; 7 int f[N], g[N]; 8 9 namespace SEG 10 { 11 int cnt[N << 3], Max[N << 3]; 12 void build(int id, int l, int r) 13 { 14 cnt[id] = Max[id] = 0; 15 if (l == r) 16 return; 17 int mid = (l + r) >> 1; 18 build(id << 1, l, mid); 19 build(id << 1 | 1, mid + 1, r); 20 } 21 void update(int id, int l, int r, int pos, int v) 22 { 23 if (pos == 0) return; 24 if (l == r) 25 { 26 cnt[id] += v; 27 if (cnt[id] > 0) Max[id] = pos; 28 else Max[id] = 0; 29 return; 30 } 31 int mid = (l + r) >> 1; 32 if (pos <= mid) update(id << 1, l, mid, pos, v); 33 else update(id << 1 | 1, mid + 1, r, pos, v); 34 Max[id] = max(Max[id << 1], Max[id << 1 | 1]); 35 } 36 } 37 38 int id[N], d[2][N]; 39 void Toposort() 40 { 41 id[0] = 0; 42 memset(f, 0, sizeof f); 43 memset(g, 0, sizeof g); 44 queue <int> q; 45 for (int i = 1; i <= n; ++i) 46 if (d[0][i] == 0) 47 q.push(i); 48 while (!q.empty()) 49 { 50 int u = q.front(); q.pop(); 51 id[++id[0]] = u; 52 for (int v, it = 0, len = G[0][u].size(); it < len; ++it) 53 { 54 v = G[0][u][it]; 55 if (--d[0][v] == 0) 56 { 57 f[v] = f[u] + 1; 58 q.push(v); 59 } 60 } 61 } 62 for (int i = 1; i <= n; ++i) 63 if (d[1][i] == 0) 64 q.push(i); 65 while (!q.empty()) 66 { 67 int u = q.front(); q.pop(); 68 for (int v, it = 0, len = G[1][u].size(); it < len; ++it) 69 { 70 v = G[1][u][it]; 71 if (--d[1][v] == 0) 72 { 73 g[v] = g[u] + 1; 74 q.push(v); 75 } 76 } 77 } 78 } 79 80 81 82 void Run() 83 { 84 while (scanf("%d%d", &n, &m) != EOF) 85 { 86 for (int i = 1; i <= n; ++i) 87 G[0][i].clear(), G[1][i].clear(); 88 memset(d, 0, sizeof d); 89 SEG::build(1, 1, m); 90 for (int i = 1, u, v; i <= m; ++i) 91 { 92 scanf("%d%d", &u, &v); 93 G[0][u].push_back(v); ++d[0][v]; 94 G[1][v].push_back(u); ++d[1][u]; 95 } 96 Toposort(); 97 for (int i = 1; i <= n; ++i) 98 SEG::update(1, 1, m, g[i], 1); 99 int Min = (int)1e9, pos = -1; 100 for (int x, i = 1; i <= n; ++i) 101 { 102 x = id[i]; 103 for (int v, it = 0, len = G[1][x].size(); it < len; ++it) 104 { 105 v = G[1][x][it]; 106 SEG::update(1, 1, m, f[v] + 1 + g[x], -1); 107 } 108 SEG::update(1, 1, m, g[x], -1); 109 int now = SEG::Max[1]; 110 if (now < Min) 111 { 112 Min = now; 113 pos = x; 114 } 115 SEG::update(1, 1, m, f[x], 1); 116 for (int v, it = 0, len = G[0][x].size(); it < len; ++it) 117 { 118 v = G[0][x][it]; 119 SEG::update(1, 1, m, f[x] + 1 + g[v], 1); 120 } 121 } 122 printf("%d %d ", pos, Min); 123 } 124 } 125 126 int main() 127 { 128 #ifdef LOCAL 129 freopen("Test.in", "r", stdin); 130 #endif 131 132 Run(); 133 return 0; 134 }