zoukankan      html  css  js  c++  java
  • POJ-3046 Ant Counting

    POJ-3046 Ant Counting

    题面

    Problem Description

    Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants!

    Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.

    How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed?

    While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were:

    3 sets with 1 ant: {1} {2} {3}
    5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3}
    5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3}
    3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3}
    1 set with 5 ants: {1,1,2,2,3}

    Your job is to count the number of possible sets of ants given the data above.

    Input

    • Line 1: 4 space-separated integers: T, A, S, and B

    • Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive

    Output

    • Line 1: The number of sets of size S..B (inclusive) that can be created. A set like {1,2} is the same as the set {2,1} and should not be double-counted. Print only the LAST SIX DIGITS of this number, with no leading zeroes or spaces.

    题意

    找含k元set的个数。

    题解来自:http://blog.csdn.net/sdj222555/article/details/10440021

    很容易想到dp[i][j]表示选到第i种,已经放了几个元素。但是很不争气的写挂了。

    书上指的优化递推关系式 大概就是指的是用前缀和。。

    可以学习到的地方是上面链接的题解用了两个指针指向数组,然后就不会搞错,值得借鉴233.

    真觉得poj该升级辣QWQ。。。

    代码

    #include <iostream>
    #include <algorithm>
    using namespace std;  
    
    int dp[2][100010], num[1111];  
    int sum[100010], up[1111];  
    int t,n,l,r,x;
    const int MOD=1000000;
    int ans;
    
    int main()  
    {  
        cin>>t>>n>>l>>r;
        for (int i=1;i<=n;i++)
        {
        	cin>>x;
        	num[x]++;	
    	}
    	
    	for (int i=1;i<=t;i++)
    		up[i]=up[i-1]+num[i];
        dp[0][0]=1;
        int *pre = dp[0], *nxt = dp[1];
        
        for (int i=1;i<=t;i++)
        {
        	sum[0]=pre[0];
        	for (int j=1;j<=up[i];j++)
        		sum[j]=(sum[j-1]+pre[j]) % MOD;
        	for (int j=0;j<=up[i];j++)
        	{
        		int tmp=max(0,j-num[i]);
        		nxt[j]=tmp==0?sum[j]:(sum[j]-sum[tmp-1])%MOD;
        		nxt[j]%=MOD;
    		}
    		swap(nxt,pre);
    	}
        for(int i=l;i<=r;i++)  
            ans=(ans+pre[i])%MOD; 
        cout<<ans<<endl; 
        return 0;  
    }  
    

    题目链接

    http://poj.org/problem?id=3046

  • 相关阅读:
    从内存中加载并启动一个exe
    使用Hamcrest增强JUnit的测试能力
    Delphi编译指令说明
    Delphi 64与32位的差异
    获取exe文件窗口抓图,将memo转化为JPG输出
    Delphi 的 Utf-8 转换
    我的第一个破解软件,试验成功!
    Qt之QComboBox(基本应用、代理设置)
    常见寄存器以及常见汇编指令,常见爆破指令 good
    大神级回答exists与in的区别
  • 原文地址:https://www.cnblogs.com/EDGsheryl/p/7343361.html
Copyright © 2011-2022 走看看