zoukankan      html  css  js  c++  java
  • POJ-3046 Ant Counting

    POJ-3046 Ant Counting

    题面

    Problem Description

    Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants!

    Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.

    How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed?

    While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were:

    3 sets with 1 ant: {1} {2} {3}
    5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3}
    5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3}
    3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3}
    1 set with 5 ants: {1,1,2,2,3}

    Your job is to count the number of possible sets of ants given the data above.

    Input

    • Line 1: 4 space-separated integers: T, A, S, and B

    • Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive

    Output

    • Line 1: The number of sets of size S..B (inclusive) that can be created. A set like {1,2} is the same as the set {2,1} and should not be double-counted. Print only the LAST SIX DIGITS of this number, with no leading zeroes or spaces.

    题意

    找含k元set的个数。

    题解来自:http://blog.csdn.net/sdj222555/article/details/10440021

    很容易想到dp[i][j]表示选到第i种,已经放了几个元素。但是很不争气的写挂了。

    书上指的优化递推关系式 大概就是指的是用前缀和。。

    可以学习到的地方是上面链接的题解用了两个指针指向数组,然后就不会搞错,值得借鉴233.

    真觉得poj该升级辣QWQ。。。

    代码

    #include <iostream>
    #include <algorithm>
    using namespace std;  
    
    int dp[2][100010], num[1111];  
    int sum[100010], up[1111];  
    int t,n,l,r,x;
    const int MOD=1000000;
    int ans;
    
    int main()  
    {  
        cin>>t>>n>>l>>r;
        for (int i=1;i<=n;i++)
        {
        	cin>>x;
        	num[x]++;	
    	}
    	
    	for (int i=1;i<=t;i++)
    		up[i]=up[i-1]+num[i];
        dp[0][0]=1;
        int *pre = dp[0], *nxt = dp[1];
        
        for (int i=1;i<=t;i++)
        {
        	sum[0]=pre[0];
        	for (int j=1;j<=up[i];j++)
        		sum[j]=(sum[j-1]+pre[j]) % MOD;
        	for (int j=0;j<=up[i];j++)
        	{
        		int tmp=max(0,j-num[i]);
        		nxt[j]=tmp==0?sum[j]:(sum[j]-sum[tmp-1])%MOD;
        		nxt[j]%=MOD;
    		}
    		swap(nxt,pre);
    	}
        for(int i=l;i<=r;i++)  
            ans=(ans+pre[i])%MOD; 
        cout<<ans<<endl; 
        return 0;  
    }  
    

    题目链接

    http://poj.org/problem?id=3046

  • 相关阅读:
    drf 之 JWT认证 什么是集群以及分布式 什么是正向代理,什么是反向代理
    drf 之自定制过滤器 分页器(三种)如何使用(重点) 全局异常 封装Response对象 自动生成接口文档
    课堂练习之“寻找最长单词链”
    《人月神话》读书笔记(三)
    用户体验
    第十四周进度报告
    课堂练习之“寻找水王”
    《人月神话》读书笔记(二)
    第二阶段冲刺(十)
    第二阶段冲刺(九)
  • 原文地址:https://www.cnblogs.com/EDGsheryl/p/7343361.html
Copyright © 2011-2022 走看看