zoukankan      html  css  js  c++  java
  • HDU 2295 Radar (二分 + Dancing Links 重复覆盖模型 )

     以下转自 这里

    最小支配集问题:二分枚举最小距离,判断可行性。可行性即重复覆盖模型,DLX解之。 

    A*的启发函数: 

    对当前矩阵来说,选择一个未被控制的列,很明显该列最少需要1个行来控制,所以ans++。 

    该列被控制后,把它所对应的行,全部设为已经选择,并把这些行对应的列也设为被控制。继续选择未被控制的列,直到没有这样的列。

    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    
    using namespace std;
    
    const double eps = 1e-9;
    const int INF = 1 << 30;
    const int MAXN = 60;
    
    struct Point
    {
        double x, y;
        Point( double x = 0, double y = 0 ):x(x), y(y) { }
        void readPoint()
        {
            scanf( "%lf%lf", &x, &y );
            return;
        }
    };
    
    Point city[MAXN];
    Point radar[MAXN];
    
    int N, M, K;
    int L[MAXN*MAXN], R[MAXN*MAXN];
    int U[MAXN*MAXN], D[MAXN*MAXN];
    int C[MAXN*MAXN], cnt[MAXN];
    bool mx[MAXN][MAXN];
    bool vis[MAXN];
    int head;
    
    void Remove( int c )
    {
        for ( int i = D[c]; i != c; i = D[i] )
        {
            R[ L[i] ] = R[i];
            L[ R[i] ] = L[i];
        }
        return;
    }
    
    void Resume( int c )
    {
        for ( int i = D[c]; i != c; i = D[i] )
        {
            R[ L[i] ] = i;
            L[ R[i] ] = i;
        }
        return;
    }
    
    //估价函数:至少还需要选择几个雷达
    int h()
    {
        memset( vis, false, sizeof(vis) );
        int res = 0;
        for ( int c = R[head]; c != head; c = R[c] )
        {
            if ( !vis[c] )
            {
                ++res;
                for ( int i = D[c]; i != c; i = D[i] )
                    for ( int j = R[i]; j != i; j = R[j] )
                        vis[ C[j] ] = true;
            }
        }
        return res;
    }
    
    bool DFS( int dep )
    {
        if ( R[head] == head ) return true;
        if ( dep + h() > K ) return false;
        int minv = INF, c;
    
        for ( int i = R[head]; i != head; i = R[i] )
        {
            if ( cnt[i] < minv )
            {
                minv = cnt[i];
                c = i;
            }
        }
    
        for ( int i = D[c]; i != c; i = D[i] )
        {
            Remove(i);
            for ( int j = R[i]; j != i; j = R[j] )
            {
                Remove(j);
                --cnt[ C[j] ];
            }
            if ( DFS( dep + 1 ) ) return true;
            for ( int j = R[i]; j != i; j = R[j] )
            {
                Resume(j);
                ++cnt[ C[j] ];
            }
            Resume(i);
        }
    
        return false;
    }
    
    bool build()
    {
        head = 0;
        for ( int i = 0; i < N; ++i )
        {
            R[i] = i + 1;
            L[i + 1] = i;
        }
        R[N] = 0;
        L[0] = N;
    
        //列链表
        for ( int j = 1; j <= N; ++j )
        {
            int pre = j;
            cnt[j] = 0;
            for ( int i = 1; i <= M; ++i )
            {
                if ( mx[i][j] )
                {
                    ++cnt[j];
                    int cur = i * N + j;
                    D[pre] = cur;
                    U[cur] = pre;
                    C[cur] = j;
                    pre = cur;
                }
            }
            U[j] = pre;
            D[pre] = j;
            if ( !cnt[j] ) return false;
        }
    
        for ( int i = 1; i <= M; ++i )
        {
            int pre = -1;
            int first = -1;
            for ( int j = 1; j <= N; ++j )
            {
                if ( mx[i][j] )
                {
                    int cur = i * N + j;
                    if ( pre == -1 ) first = cur;
                    else
                    {
                        R[pre] = cur;
                        L[cur] = pre;
                    }
                    pre = cur;
                }
            }
            if ( first != -1 )
            {
                L[first] = pre;
                R[pre] = first;
            }
        }
        return true;
    }
    
    /*************以上DLX模板***************/
    
    double PointDis( Point a, Point b )
    {
        return sqrt( (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) );
    }
    
    int dcmp( double x )    //控制精度
    {
        if ( fabs(x) < eps ) return 0;
        else return x < 0 ? -1 : 1;
    }
    
    bool check( double mid )
    {
        memset( mx, false, sizeof(mx) );
    
        for ( int i = 1; i <= M; ++i )
            for ( int j = 1; j <= N; ++j )
            {
                if ( dcmp( PointDis( radar[i], city[j] ) - mid ) < 0 )
                    mx[i][j] = true;
            }
    
        if ( build() ) return DFS(0);
        return false;
    }
    
    double solved()
    {
        double l = 0.0;
        double r = 1500.0;
        double ans;
        while ( dcmp( r - l ) > 0 )
        {
            double mid = (l + r) / 2.0;
            if ( check( mid ) )
            {
                r = mid;
                ans = mid;
            }
            else l = mid;
        }
        return ans;
    }
    
    int main()
    {
        int T;
        scanf( "%d", &T );
        while ( T-- )
        {
            scanf( "%d%d%d", &N, &M, &K );
            for( int i = 1; i <= N; ++i )
                city[i].readPoint();
            for ( int i = 1; i <= M; ++i )
                radar[i].readPoint();
    
            printf( "%.6f
    ", solved() );
        }
        return 0;
    }
  • 相关阅读:
    破解版sublimeText3重新安装Package Control方法
    javascript中对象的属性的特性
    正则表达式元字符详解
    正则表达式学习笔记
    ExtJs布局大全
    js如何获取select下拉框的value以及文本内容
    ExtJS4之Ext.MessageBox的各种用法
    CODING 代码多仓库实践
    2019 DevOps 必备面试题——容器化和虚拟化
    拥抱微服务,CODING 即将上线单项目多仓库功能
  • 原文地址:https://www.cnblogs.com/GBRgbr/p/3265064.html
Copyright © 2011-2022 走看看