Allowance
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 4903 Accepted: 1943
Description
As a reward for record milk production, Farmer John has decided to start paying Bessie the cow a small weekly allowance. FJ has a set of coins in N (1 <= N <= 20) different denominations, where each denomination of coin evenly divides the next-larger denomination (e.g., 1 cent coins, 5 cent coins, 10 cent coins, and 50 cent coins).Using the given set of coins, he would like to pay Bessie at least some given amount of money C (1 <= C <= 100,000,000) every week.Please help him ompute the maximum number of weeks he can pay Bessie.
Input
Line 1: Two space-separated integers: N and C
Lines 2..N+1: Each line corresponds to a denomination of coin and contains two integers: the value V (1 <= V <= 100,000,000) of the denomination, and the number of coins B (1 <= B <= 1,000,000) of this denomation in Farmer John’s possession.
Output
- Line 1: A single integer that is the number of weeks Farmer John can pay Bessie at least C allowance
Sample Input
3 6
10 1
1 100
5 120
Sample Output
111
Hint
INPUT DETAILS:
FJ would like to pay Bessie 6 cents per week. He has 100 1-cent coins,120 5-cent coins, and 1 10-cent coin.
OUTPUT DETAILS:
FJ can overpay Bessie with the one 10-cent coin for 1 week, then pay Bessie two 5-cent coins for 10 weeks and then pay Bessie one 1-cent coin and one 5-cent coin for 100 weeks.
解题新的:
- 题意就是你有很多张面额不同的纸币,你每个星期要给奶牛至少c元,问你用现在的钱最多给奶牛多少周。
- 这个题的感觉就是贪心,想了两三种方案感觉都不太对,后来发现这真的是很好的一个题,首先,将大于等于c的面额的钱直接每个星期给奶牛一张,将面额大于等于c的前去除,然后从大到小开始选择,要选择的金额尽可能的接近c,如果刚好能够凑足c就作为当前的一种方案,如果不能凑足c那就再从小的开始选,要选出一种的总额不少于c但尽量接近c作为当前的方案,然后计算如果按照如此方案最多可以给奶牛多少周,然后按照相同的方法再选方案,一直选到选择的金额不能凑足c为止。
- 为啥可以用这中方法,首先,这个题的数据量给你很大的提示,纸币的面额最多20种,然后排除起它比较简单的贪心思维,简单的从大到小,从小到大什么的,然后将从大到小,从小到大结合起来。
#include <stdio.h>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn = 25;
struct MONEY {
ll va,num;
}m[maxn];
ll ans = 0,n,c;
ll use[maxn];
bool cmp(MONEY a,MONEY b) {
return a.va < b.va;
}
void init() {
scanf("%d%d",&n,&c);
for(int i=0;i<n;i++)
scanf("%d%d",&m[i].va,&m[i].num);
sort(m,m+n,cmp);
}
int main() {
init();
bool flag;
for(int i=n-1;i>=0;i--) {
if(m[i].va >= c) {
ans += m[i].num;
m[i].num = 0;
}
}
while(true) {
memset(use,0,sizeof(use));
flag = false;
ll temp_c = c,M;
for(int i=n-1;i>=0;i--) {
if(m[i].num) {
ll num = temp_c / m[i].va;
M = min(num,m[i].num);
temp_c -= M*m[i].va;
use[i] = M;
if(temp_c == 0) {
flag = true;
break;
}
}
}
if(temp_c > 0) {
for(int i=0;i<n;i++) {
if(m[i].num > use[i]) {
while(use[i] < m[i].num) {
temp_c -= m[i].va;
use[i]++;
if(temp_c < 0) {
flag = true;
break;
}
}
}
if(flag)
break;
}
}
if(!flag)
break;
ll cnt = 0x7f7f7f7f;
for(int i=0;i<n;i++) {
if(use[i])
cnt = min(cnt,m[i].num/use[i]);
}
ans += cnt;
for(int i=0;i<n;i++)
m[i].num -= use[i]*cnt;
}
printf("%d
",ans);
return 0;
}