zoukankan      html  css  js  c++  java
  • 【UVA 11383】 Golden Tiger Claw (KM算法副产物)

    Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But Evil
    Boy Genius Jack Spicer is also there. Omi and Jack found the Shen Gong Wu at the same time so they
    rushed for it but alas they touched it at the same time. Then what? It is time for “Xiaolin Showdown”.
    Jack challenged Omi to play a game. The game is simple! There will be an N ∗ N board where
    each cell in the board contains some number. They have to assign numbers to each row and column
    separately so that w(i, j) ≤ row(i) + col(j) where w(i, j) is the number assigned to the cell located
    at i-th row and j-th column, row(i) is the number assigned to i-th row and col(j) is the number

    assigned to j-th column. That is simple isnt it? Well . . . the main part is that you have to minimize
    1≤i≤n
    (row(i) + col(j)).
    Jack has taken his favorite “Monkey Stuff” and Omi has taken “Golden Tiger Claw”. With the help
    of this “Golden Tiger Claw”, he can go anywhere in the world. He has come to you and seeking your
    help. Jack is using his computer to solve this problem. So do it quick! Find the most optimal solution
    for Omi so that you can also be part of history in saving the world from the darkness of evil.
    Input
    Input contains 15 test cases. Each case starts with N. Then there are N lines containing N numbers
    each. All the numbers in input is positive integer within the limit 100 except N which can be at most
    500.
    Output
    For each case in the first line there will be N numbers, the row assignments. In the next line there
    will N column assignment. And at the last line the minimum sum should be given. If there are several
    possible solutions give any.
    Note: Be careful about the output format. You may get Wrong Answer if you don’t output properly.
    Sample Input
    2
    1 1
    1 1
    Sample Output
    1 1
    0 0
    2

    【题意】

      给出一个n*n的矩阵(n<=500)给每一行x[i],每一列标号y[i],使得对任意a[i][j],x[i]+y[j]>=a[i][j]求行标与列标和最小

    【分析】

      事实上和最佳匹配没什么关系,但是我们进行KM算法的时候,有w(i,j)<=row(i)+col(j),并且算出来的顶标之和是最小的,so。。。

    代码如下:

      1 #include<cstdio>
      2 #include<cstdlib>
      3 #include<cstring>
      4 #include<iostream>
      5 #include<algorithm>
      6 #include<queue>
      7 #include<cmath>
      8 using namespace std;
      9 #define Maxn 510
     10 #define Maxm 250010
     11 #define INF 0xfffffff
     12 
     13 struct node
     14 {
     15     int x,y,c,next;
     16 }t[Maxm];int len;
     17 int first[Maxn];
     18 
     19 int mymin(int x,int y) {return x<y?x:y;}
     20 int mymax(int x,int y) {return x>y?x:y;}
     21 
     22 void ins(int x,int y,int c)
     23 {
     24     t[++len].x=x;t[len].y=y;t[len].c=c;
     25     t[len].next=first[x];first[x]=len;
     26 }
     27 
     28 int a[Maxn][Maxn];
     29 int n;
     30 
     31 int lx[Maxn],ly[Maxn],match[Maxn],slack[Maxn];
     32 bool visx[Maxn],visy[Maxn];
     33 
     34 bool ffind(int x)
     35 {
     36     visx[x]=1;
     37     for(int i=first[x];i;i=t[i].next) if(!visy[t[i].y])
     38     {
     39         int y=t[i].y;
     40         if(t[i].c==lx[x]+ly[y])
     41         {
     42             visy[y]=1;
     43             if(!match[y]||ffind(match[y]))
     44             {  
     45                 match[y]=x;
     46                 return 1;
     47             }
     48         }
     49         else slack[y]=mymin(slack[y],lx[x]+ly[y]-t[i].c);
     50     }
     51     return 0;
     52 }
     53 
     54 void solve()
     55 {
     56     memset(match,0,sizeof(match));
     57     memset(lx,0,sizeof(lx));
     58     memset(ly,0,sizeof(ly));
     59     for(int i=1;i<=n;i++)
     60      for(int j=first[i];j;j=t[j].next) lx[i]=mymax(lx[i],t[j].c);
     61     
     62     for(int i=1;i<=n;i++)
     63     {
     64         for(int j=1;j<=n;j++)
     65             slack[j]=INF;
     66         while(1)
     67         {
     68             memset(visx,0,sizeof(visx));
     69             memset(visy,0,sizeof(visy));
     70             if(ffind(i)) break;
     71             int delta=INF;
     72             for(int j=1;j<=n;j++)
     73             {
     74                 if(!visy[j])
     75                 {
     76                     delta=mymin(delta,slack[j]);
     77                 }
     78             }
     79             if(delta==INF) return;
     80             for(int j=1;j<=n;j++)
     81             {
     82                 if(visx[j]) lx[j]-=delta;
     83                 if(visy[j]) ly[j]+=delta;
     84                 else slack[j]-=delta;
     85             }
     86         }
     87     }
     88 }
     89 
     90 int main()
     91 {
     92     while(scanf("%d",&n)!=EOF)
     93     {
     94         len=0;
     95         memset(first,0,sizeof(first));
     96         for(int i=1;i<=n;i++)
     97           for(int j=1;j<=n;j++)
     98           {
     99               int x;
    100               scanf("%d",&x);
    101               ins(i,j,x);
    102           }
    103         solve();
    104         for(int i=1;i<=n;i++) printf("%d ",lx[i]);printf("
    ");
    105         for(int i=1;i<=n;i++) printf("%d ",ly[i]);printf("
    ");
    106         int ans=0;
    107         for(int i=1;i<=n;i++) ans+=lx[i]+ly[i];
    108         printf("%d
    ",ans);
    109     }
    110     return 0;
    111 }
    [UVA 11383]

    2016-10-27 15:13:52

  • 相关阅读:
    新博客安家
    Win32设置与获取cookies的几种方法
    Win32 操作剪切板
    搜索PEB结构获取Kernel32.dll基址
    动人心魄音乐 [身骑白马 徐佳莹]
    单例模式与静态方法的区别(转载)
    个人回顾
    关于引入每日站会的思考
    2017年的总结和回顾
    《知易行难》回顾
  • 原文地址:https://www.cnblogs.com/Konjakmoyu/p/6004034.html
Copyright © 2011-2022 走看看