zoukankan      html  css  js  c++  java
  • 「SOL」事情的相似度(LOJ)

    回头补字符串(从SAM开始)


    # 题面

    给定一个长度为 (n) 的 01 字符串 (S),记以 (i) 位置结束的前缀为 (S[i])

    给定 (m) 组询问,每组询问给出 (l,r),求

    [max_{i,j}ig{operatorname{LCS}(S[i],S[j])mid i eq jland lle i,jle rig} ]

    数据规模:(n,mle 10^5)


    # 解析

    考虑建出 SAM,记 SAM 上代表前缀 (i) 的节点为 (p_i),则有 (operatorname{LCS}(S[i],S[j])) 为 parent 树上 (p_i,p_j) 的 LCA 代表的最长字符串长度。

    由此分析以下两种做法。

    - SOLUTION 1. 启发式合并

    考虑在 parent 树上由子树向上合并。

    set 维护出子树 (i) 中包含了哪些前缀,记这个集合为 (E_i),合并只需将子节点 (v)(E_v) 与父节点 (u)(E_u) 合并后的结果赋给新的 (E_u) 即可。

    通过启发式合并,每次暴力将较小的集合中的元素插入较大集合,可以做到 (mathcal{O}(nlog^2n))

    再考虑如何计算答案。当子节点 (v) 的信息合并到父节点 (u) 上时,考虑每对 ((i,j))(iin E_v), (jin E_u)(p_i,p_j) 的 LCA 就是点 (u)

    显然每对 ((i,j)) 的 LCS 可以贡献到满足 (lle min{i,j}< max{i,j}le r) 的询问 ((l,r))

    那么我们只需要合并时记录下三元组 ((i,j,x)),表示 (LCS(S[i],S[j])=x)。对询问离线,two-point + 树状数组 即可回答询问。

    但是我们发现三元组的数量是 (mathcal{O}(n^2)) 的,不能接受。观察之前的过程,发现许多三元组是无用的——

    在合并 (E_u,E_v) 时,对于每个 (iin E_u),我们只需要找到 (E_v)(i) 的 “前驱” 和 “后继” (j)。因为比前驱更小的 (j),其能够贡献到的 ((l,r)) 的范围更小,比后继更大的 (j) 同理。

    合并次数是 (mathcal{O}(nlog n)),于是三元组的数量也是 (mathcal{O}(nlog n))

    用 two-point + 树状数组,具体地:

    • 将询问 ((l,r)) 挂在 (r)
    • 从左到右枚举右端点 (r_0),枚举三元组 ((l_0,r_0,x_0)),更新 (l< l_0) 的询问的答案与 (x_0) 取 max;
    • 因为取 max 不存在删除操作,也就不必要讨论树状数组无可减性的限制,只需树状数组维护后缀 max 即可回答挂在 (r) 的询问。

    复杂度也是 (mathcal{O}(nlog^2n))

    - SOLUTION 2. LCT

    同样对询问离线,将 ((l,r)) 挂在 (r) 处。

    考虑一种求树上 LCA 的方法。求 (u,v) 的 LCA,可以将根到 (u) 的路径上打上 (u) 的标记,然后从 (v) 向上爬,找到第一个有 (u) 的标记的点,即为 LCA。

    于是我们可以这样解决这个问题:

    • 从左到右加入右端点 (r)
    • (p_r) 开始向根爬,对路上找到的每个标记 (l),同样记录三元组 ((l,r,x)) 表示 (LCS(S[i],S[j])=x)
    • (p_r) 到根的路径打上 (r) 的标记。

    但是显然一个点上会被盖很多标记,这样复杂度就不优了。

    实际上我们只需要保留每个点上最大的标记,和 SOLUTION 1 一样的道理,因为与 (p_r) LCA 相同的 (p_l) 只有 (l) 最大的能够贡献到的询问是最多的。

    因为我们是从小到大插入 (r),保留最大的就相当于直接覆盖。

    然后考虑如何实现这个过程,不妨观察一下……

    这不是 LCT 的 access 操作吗?

    所以直接用 LCT,就可以同时找到链上的标记,以及给链打标记了。


    # 源代码

    - 启发式合并

    点击展开/折叠代码
    /*Lucky_Glass*/
    #include<set>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    inline int rin(int &r){
    	int b=1,c=getchar();r=0;
    	while(c<'0' || '9'<c) b=c=='-'?-1:b,c=getchar();
    	while('0'<=c && c<='9') r=(r<<1)+(r<<3)+(c^'0'),c=getchar();
    	return r*=b;
    }
    const int N=1e5+10;
    #define con(type) const type &
    typedef set<int>::iterator iter;
    
    struct Segment{
    	int le,ri,key;
    	Segment(){}
    	Segment(con(int)_le,con(int)_ri,con(int)_key):le(_le),ri(_ri),key(_key){}
    }seg[N*20];
    bool cmpSegment(con(Segment)u,con(Segment)v){return u.ri<v.ri;}
    
    int nseg;
    
    struct Node{
    	int nxt[2],len,fa;
    	inline int& operator [](con(int)i){return nxt[i];}
    };
    struct SamAuto{
    	int bin[N],setid[N<<1],idx[N<<1],ncnt,rt,lasnod;
    	Node nod[N<<1];
    	set<int> endpos[N<<1];
    	int newNode(con(int)_len){
    		int p=++ncnt;nod[p].len=_len;
    		return p;
    	}
    	void extend(con(int)c,con(int)id){
    		int p=lasnod,np=newNode(nod[p].len+1);
    		lasnod=np;
    		endpos[np].insert(id);
    		while(p && !nod[p][c]) nod[p][c]=np,p=nod[p].fa;
    		if(!p) nod[np].fa=rt;
    		else{
    			int q=nod[p][c];
    			if(nod[q].len==nod[p].len+1) nod[np].fa=q;
    			else{
    				int nq=newNode(0);
    				nod[nq]=nod[q],nod[nq].len=nod[p].len+1;
    				nod[q].fa=nod[np].fa=nq;
    				while(p && nod[p][c]==q) nod[p][c]=nq,p=nod[p].fa;
    			}
    		}
    	}
    	void build(char *str,con(int)len){
    		rt=lasnod=newNode(0);
    		for(int i=1;i<=len;i++) extend(str[i]-'0',i);
    	}
    	void solve(con(int)len){
    		for(int i=1;i<=ncnt;i++) bin[nod[i].len]++,setid[i]=i;
    		for(int i=1;i<=len;i++) bin[i]+=bin[i-1];
    		for(int i=1;i<=ncnt;i++) idx[bin[nod[i].len]--]=i;
    		for(int i=ncnt;i>1;i--){
    			int u=idx[i],uid=setid[u],fid=setid[nod[u].fa],key=nod[nod[u].fa].len;
    			if(endpos[uid].size()>endpos[fid].size()) swap(uid,fid);
    			for(iter it=endpos[uid].begin();it!=endpos[uid].end();it++){
    				iter tmp=endpos[fid].lower_bound(*it);
    				if(tmp!=endpos[fid].end()) seg[++nseg]=Segment(*it,*tmp,key);
    				if(tmp!=endpos[fid].begin()) tmp--,seg[++nseg]=Segment(*tmp,*it,key);
    			}
    			for(iter it=endpos[uid].begin();it!=endpos[uid].end();it++)
    				endpos[fid].insert(*it);
    			setid[nod[u].fa]=fid;
    		}
    	}
    }sam;
    
    struct TreeArray{
    	#define lowbit(x) ((x)&(-(x)))
    	int ary[N],siz;
    	void init(con(int)_siz){siz=_siz;}
    	void modify(con(int)pos,con(int)key){
    		for(int i=pos;i<=siz;i+=lowbit(i))
    			ary[i]=max(ary[i],key);
    	}
    	int query(con(int)pos){
    		int ret=0;
    		for(int i=pos;i;i-=lowbit(i))
    			ret=max(ret,ary[i]);
    		return ret;
    	}
    	#undef lowbit
    }tary;
    
    int n,m;
    char str[N];
    int ans[N];
    vector< pair<int,int> > qry[N];
    
    int main(){
    	// freopen("input.in","r",stdin);
    	rin(n),rin(m),scanf("%s",str+1);
    	sam.build(str,n);
    	sam.solve(n);
    	sort(seg+1,seg+1+nseg,cmpSegment);
    	// for(int i=1;i<=nseg;i++) printf("[%d,%d] = %d
    ",seg[i].le,seg[i].ri,seg[i].key);
    	for(int i=1,le,ri;i<=m;i++){
    		rin(le),rin(ri);
    		qry[ri].push_back(make_pair(le,i));
    	}
    	tary.init(n);
    	for(int i=1,pseg=1;i<=n;i++){
    		while(pseg<=nseg && seg[pseg].ri==i){
    			tary.modify(n-seg[pseg].le+1,seg[pseg].key);
    			pseg++;
    		}
    		for(int k=0,kk=(int)qry[i].size();k<kk;k++)
    			ans[qry[i][k].second]=tary.query(n-qry[i][k].first+1);
    	}
    	for(int i=1;i<=m;i++) printf("%d
    ",ans[i]);
    	return 0;
    }
    

    - LCT

    点击展开/折叠代码
    /*Lucky_Glass*/
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    inline int rin(int &r){
    	int b=1,c=getchar();r=0;
    	while(c<'0' || '9'<c) b=c=='-'?-1:b,c=getchar();
    	while('0'<=c && c<='9') r=(r<<1)+(r<<3)+(c^'0'),c=getchar();
    	return r*=b;
    }
    const int N=1e5+10;
    #define con(type) const type &
    
    struct TreeArray{
    	#define lowbit(x) ((x)&(-(x)))
    	int arr[N],siz;
    	void init(con(int)_siz){siz=_siz;}
    	void modify(con(int)pos,con(int)key){
    		for(int i=pos;i<=siz;i+=lowbit(i))
    			arr[i]=max(arr[i],key);
    	}
    	int query(con(int)pos){
    		int ret=0;
    		for(int i=pos;i;i-=lowbit(i)) ret=max(ret,arr[i]);
    		return ret;
    	}
    	#undef lowbit
    }tary;
    
    struct Node{
    	int nxt[2],len,fa;
    	inline int& operator [](con(int)i){return nxt[i];}
    };
    struct SamAuto{
    	Node nod[N<<1];
    	int lasnod,rt,ncnt,pos[N];
    	int newNode(con(int)_len){
    		int p=++ncnt;
    		nod[p].len=_len;
    		return p;
    	}
    	void extend(con(int)c,con(int)id){
    		int p=lasnod,np=newNode(nod[p].len+1);
    		pos[id]=lasnod=np;
    		while(p && !nod[p][c]) nod[p][c]=np,p=nod[p].fa;
    		if(!p) nod[np].fa=rt;
    		else{
    			int q=nod[p][c];
    			if(nod[q].len==nod[p].len+1) nod[np].fa=q;
    			else{
    				int nq=newNode(0);
    				nod[nq]=nod[q],nod[nq].len=nod[p].len+1;
    				nod[np].fa=nod[q].fa=nq;
    				while(p && nod[p][c]==q) nod[p][c]=nq,p=nod[p].fa;
    			}
    		}
    	}
    	void build(char *str,con(int)len){
    		rt=lasnod=newNode(0);
    		for(int i=1;i<=len;i++) extend(str[i]-'0',i);
    	}
    	int operator [](con(int)i){return pos[i];}
    }sam;
    
    namespace LCT{
    	struct SNode{
    		int nxt[2],fa,mx,lzy;
    		inline int& operator [](con(int)i){return nxt[i];}
    	}nod[N<<1];
    	void samToLCT(con(int)n){
    		for(int i=1;i<=n;i++)
    			nod[i].fa=sam.nod[i].fa;
    	}
    	bool ifRoot(con(int)u){return !nod[u].fa || (nod[nod[u].fa][0]!=u && nod[nod[u].fa][1]!=u);}
    	void setChild(con(int)u,con(int)v,con(int)d){
    		nod[u][d]=v;
    		if(v) nod[v].fa=u;
    	}
    	void update(con(int)u,con(int)key){
    		nod[u].mx=max(nod[u].mx,key);
    		nod[u].lzy=max(nod[u].lzy,key);
    	}
    	int dir(con(int)x){return nod[nod[x].fa][1]==x;}
    	void pushDown(con(int)u){
    		if(!nod[u].lzy) return;
    		if(nod[u][0]) update(nod[u][0],nod[u].lzy);
    		if(nod[u][1]) update(nod[u][1],nod[u].lzy);
    		nod[u].lzy=0;
    	}
    	void pushUp(con(int)u){nod[u].mx=max(nod[u].mx,max(nod[nod[u][0]].mx,nod[nod[u][1]].mx));}
    	void ina_rotate(con(int)x){
    		int y=nod[x].fa,d=dir(x);
    		pushDown(y),pushDown(x);
    		if(!ifRoot(y)) setChild(nod[y].fa,x,dir(y));
    		else nod[x].fa=nod[y].fa;
    		setChild(y,nod[x][!d],d);
    		setChild(x,y,!d);
    		pushUp(y),pushUp(x);
    	}
    	void splay(int x){
    		static int stk[N<<1];
    		int nstk=0,tmp=x;
    		while(!ifRoot(tmp))
    			stk[++nstk]=tmp,tmp=nod[tmp].fa;
    		stk[++nstk]=tmp;
    		while(nstk) pushDown(stk[nstk--]);
    		while(!ifRoot(x)){
    			int y=nod[x].fa;
    			if(ifRoot(y)) ina_rotate(x);
    			else{
    				if(dir(x)==dir(y)) ina_rotate(y);
    				else ina_rotate(x);
    				ina_rotate(x);
    			}
    		}
    		pushUp(x);
    	}
    	void access(int x,con(int)tag,con(int)n){
    		int y;
    		for(y=0;x;y=x,x=nod[x].fa){
    			splay(x);
    			setChild(x,y,1);
    			tary.modify(n-nod[x].mx+1,sam.nod[x].len);
    		}
    		update(y,tag);
    	}
    }
    
    int n,m;
    char str[N];
    int ans[N];
    vector< pair<int,int> > qry[N];
    
    int main(){
    	// freopen("input.in","r",stdin);
    	rin(n),rin(m),scanf("%s",str+1);
    	for(int i=1,l,r;i<=m;i++){
    		rin(l),rin(r);
    		qry[r].push_back(make_pair(l,i));
    	}
    	tary.init(n);
    	sam.build(str,n);
    	LCT::samToLCT(sam.ncnt);
    	for(int i=1;i<=n;i++){
    		LCT::access(sam[i],i,n);
    		for(int k=0,kk=(int)qry[i].size();k<kk;k++)
    			ans[qry[i][k].second]=tary.query(n-qry[i][k].first+1);
    	}
    	for(int i=1;i<=m;i++) printf("%d
    ",ans[i]);
    	return 0;
    }
    

    THE END

    Thanks for reading!

    (天地虽大)水中明月又一片
    (其化均也)心上尘埃只一叶
    (万物虽多)提指拈花却一线
    (其治一也)恍然一念间
    (四达通流)欸乃渔谣隔一涧
    (无所不及)跌宕石中叩一焰
    (孰守无心)万化兴衰皆成镜鉴
    (动以天行)照霜天

    ——《万象霜天(Vocaloid全员)》By 伊水 / 流绪 / Creuzer

    > Link 万象霜天-Bilibili

    欢迎转载٩(๑❛ᴗ❛๑)۶,请在转载文章末尾附上原博文网址~
  • 相关阅读:
    Java多线程之等待唤醒机制
    Java多线程之线程间的通信
    Java多线程之八锁问题
    Java多线程之基础
    el-table的动态合并行和列
    服务器、IP地址和域名之间有什么关系?
    node学习ing
    swipper的轮播图
    swipper内的部分区域的滚动(overflow: auto)与整个屏幕滚动冲突
    vue项目中引入 html2canvas ,控制台报错 Cannot assign to read only property 'className' of object '#< SVGSVGElement >'
  • 原文地址:https://www.cnblogs.com/LuckyGlass-blog/p/14483613.html
Copyright © 2011-2022 走看看