zoukankan      html  css  js  c++  java
  • Apriori 获取关联规则实现

    前言

    自己的一个Apriori 获取关联规则的python实现。具体原理不讲,代码添加了说明,还是很好理解的。

    数据预处理

    #最小置信度
    min_conf = 0.5
    #最小支持度
    min_sup = 2
    f=open('data.txt')
    dataset = f.readlines()
    print(dataset)
    
    ['T1	bread, cream, milk, tea
    ', 'T2	bread, cream, milk
    ', 'T3	cake, milk
    ', 'T4	milk, tea
    ', 'T5	bread, cake, milk
    ', 'T6	bread, tea
    ', 'T7	beer, milk, tea
    ', 'T8	bread, tea
    ', 'T9	bread, cream, milk, tea
    ', 'T10	bread, milk, tea']
    
    dataset = [data.replace('
    ','').split('	') for data in dataset]
    print(dataset)
    
    [['T1', 'bread, cream, milk, tea'], ['T2', 'bread, cream, milk'], ['T3', 'cake, milk'], ['T4', 'milk, tea'], ['T5', 'bread, cake, milk'], ['T6', 'bread, tea'], ['T7', 'beer, milk, tea'], ['T8', 'bread, tea'], ['T9', 'bread, cream, milk, tea'], ['T10', 'bread, milk, tea']]
    
    dataset = [tuple([data[0],sorted(data[1].replace(' ', '').split(','))]) for data in dataset]
    print(dataset)
    
    [('T1', ['bread', 'cream', 'milk', 'tea']), ('T2', ['bread', 'cream', 'milk']), ('T3', ['cake', 'milk']), ('T4', ['milk', 'tea']), ('T5', ['bread', 'cake', 'milk']), ('T6', ['bread', 'tea']), ('T7', ['beer', 'milk', 'tea']), ('T8', ['bread', 'tea']), ('T9', ['bread', 'cream', 'milk', 'tea']), ('T10', ['bread', 'milk', 'tea'])]
    
    terms = [term for data in dataset for term in data[1]]
    terms.sort()
    terms = [terms[i] for i in range(0,len(terms)) if i==0 or terms[i]!=terms[i-1]]
    print(terms)
    
    ['beer', 'bread', 'cake', 'cream', 'milk', 'tea']
    

    Aprior寻找频繁项集

    def is_sub_seq(P, T):
        '''判断P是否为T的子序列
        Parameters
        --------
        P: 一个有序序列
        T: 一个有序序列
        '''
        i, j = 0, 0
        while(i<len(P) and j<len(T)):
            if(P[i]==T[j]):
                i+=1
            j+=1
        return i==len(P)
    
    def Aprior_sieve(L):
        '''从一个项集组成的序列中中筛选出频繁项集
        Parameters
        ---
        L: 一个项集组成的序列
        
        Returns
        ---
        一个频繁项集和它支持度组成的序列
        '''
        L = [[l,0] for l in L]
        for l in L:
            for data in dataset:
                if(is_sub_seq(l[0], data[1])):
                    l[1] += 1
        L = [l for l in L if l[1]>=minsup]
        return L
        
    
    def Aprior_gen(L,k):
        '''通过k项集构造k+1项集
        Parameters
        ---
        L:一个频繁k项集和它支持度组成的序列
        k:频繁k项集的项数
        
        Returns
        ---
        一个k+1项集组成的序列
        '''
        print(k,":	",L)
        NL = []
        myset = {tuple(l[0]) for l in L}
        for i in range(0, len(L)):
            for j in range(i+1, len(L)):
                if(L[i][0][:k-1]==L[j][0][:k-1]):
                    nl = L[i][0].copy()
                    nl.append(L[j][0][k-1])
                    ok = True
                    for r in range(0, k-1):
                        tmp = nl.copy()
                        tmp.pop(r)
                        tmp = tuple(tmp)
                        if(tmp not in myset):
                            ok = False
                            break
                    if(ok):
                        NL.append(nl)
                else:
                    break
        return NL
                    
    
    L = [[term] for term in terms]
    L = Aprior_sieve(L)
    print(L)
    
    [[['bread'], 7], [['cake'], 2], [['cream'], 3], [['milk'], 8], [['tea'], 7]]
    
    Ans = []
    Ans.append(L)
    for i in range(1,len(terms)):
        L = Aprior_gen(Ans[i-1],i)
        L = Aprior_sieve(L)
        if(len(L)==0):
            break
        Ans.append(L)
    print(Ans)
    
    1 :	 [[['bread'], 7], [['cake'], 2], [['cream'], 3], [['milk'], 8], [['tea'], 7]]
    2 :	 [[['bread', 'cream'], 3], [['bread', 'milk'], 5], [['bread', 'tea'], 5], [['cake', 'milk'], 2], [['cream', 'milk'], 3], [['cream', 'tea'], 2], [['milk', 'tea'], 5]]
    3 :	 [[['bread', 'cream', 'milk'], 3], [['bread', 'cream', 'tea'], 2], [['bread', 'milk', 'tea'], 3], [['cream', 'milk', 'tea'], 2]]
    4 :	 [[['bread', 'cream', 'milk', 'tea'], 2]]
    [[[['bread'], 7], [['cake'], 2], [['cream'], 3], [['milk'], 8], [['tea'], 7]], [[['bread', 'cream'], 3], [['bread', 'milk'], 5], [['bread', 'tea'], 5], [['cake', 'milk'], 2], [['cream', 'milk'], 3], [['cream', 'tea'], 2], [['milk', 'tea'], 5]], [[['bread', 'cream', 'milk'], 3], [['bread', 'cream', 'tea'], 2], [['bread', 'milk', 'tea'], 3], [['cream', 'milk', 'tea'], 2]], [[['bread', 'cream', 'milk', 'tea'], 2]]]
    

    获取关联规则

    mydict = { tuple(l[0]):l[1] for i in range(0, len(Ans)) for l in Ans[i]}
    print(mydict)
    R=set()
    
    {('bread',): 7, ('cake',): 2, ('cream',): 3, ('milk',): 8, ('tea',): 7, ('bread', 'cream'): 3, ('bread', 'milk'): 5, ('bread', 'tea'): 5, ('cake', 'milk'): 2, ('cream', 'milk'): 3, ('cream', 'tea'): 2, ('milk', 'tea'): 5, ('bread', 'cream', 'milk'): 3, ('bread', 'cream', 'tea'): 2, ('bread', 'milk', 'tea'): 3, ('cream', 'milk', 'tea'): 2, ('bread', 'cream', 'milk', 'tea'): 2}
    
    def conf(rule):
        return mydict[rule[1]]/mydict[rule[0]]
    
    def gen_rule(X, Y):
        for item in Y:
            if item not in X:
                nX = X.copy()
                nX.append(item)
                nX.sort()
                rule = (tuple(nX),Y)
                if(rule not in R and conf(rule)>=min_conf):
                    R.add(rule)
                    gen_rule(nX, Y)
    
    for l in mydict.keys():
        gen_rule([],l)
    
    R = [(f, tuple(set(b)-set(f))) for f, b in R]
    R.sort()
    print(R)
    
    [(('bread',), ()), (('bread',), ('milk',)), (('bread',), ('tea',)), (('bread', 'cream'), ()), (('bread', 'cream'), ('milk',)), (('bread', 'cream'), ('milk', 'tea')), (('bread', 'cream'), ('tea',)), (('bread', 'cream', 'milk'), ()), (('bread', 'cream', 'milk'), ('tea',)), (('bread', 'cream', 'milk', 'tea'), ()), (('bread', 'cream', 'tea'), ()), (('bread', 'cream', 'tea'), ('milk',)), (('bread', 'milk'), ()), (('bread', 'tea'), ()), (('cake',), ()), (('cake',), ('milk',)), (('cake', 'milk'), ()), (('cream',), ()), (('cream',), ('bread',)), (('cream',), ('bread', 'milk')), (('cream',), ('bread', 'milk', 'tea')), (('cream',), ('bread', 'tea')), (('cream',), ('milk',)), (('cream',), ('milk', 'tea')), (('cream',), ('tea',)), (('cream', 'milk'), ()), (('cream', 'milk'), ('bread',)), (('cream', 'milk'), ('bread', 'tea')), (('cream', 'milk'), ('tea',)), (('cream', 'milk', 'tea'), ()), (('cream', 'milk', 'tea'), ('bread',)), (('cream', 'tea'), ()), (('cream', 'tea'), ('bread',)), (('cream', 'tea'), ('bread', 'milk')), (('cream', 'tea'), ('milk',)), (('milk',), ()), (('milk',), ('bread',)), (('milk',), ('tea',)), (('milk', 'tea'), ()), (('tea',), ()), (('tea',), ('bread',)), (('tea',), ('milk',))]
    
    print(len(mydict), len(R))
    
    17 42
    

    感想

    算法的原理还是比较简单的,但实现起来还是要花些功夫。另外使用python的一些特性可以极大简化代码实现,如列表解析(学到了一种多重循环的解析),容器转换。踩了一波语法特性的坑,比如copy,dict的键为容器的话只能用tuple

  • 相关阅读:
    用汇编的眼光看c++(之模板函数) 四
    从B树、B+树、B*树谈到R 树 四
    how to locate dll in native c++ world / dotnet world?
    GAC和sidebyside
    ARM VS Intel
    关于dotnet下的encoding
    synchronization objects for interprocess synchronization and multithreadiing
    [remote debug]WinDBG 技巧: 如何用WinDBG远程调试程序
    [tip]transparent bmp
    Review: functor / function object
  • 原文地址:https://www.cnblogs.com/Merodach/p/9040554.html
Copyright © 2011-2022 走看看