这个路径可能存在从子节点经过父节点,再到子节点的情况,所有从当前节点构成的路径需要考虑左右两条路径相加,用递归,求得左右的最长路径,相加,即为所求
// Study.cpp: 定义控制台应用程序的入口点。 // #include "stdafx.h" #include <iostream> #include <vector> #include <unordered_map> #include <unordered_set> #include <queue> #include <string> #include <algorithm> #include <sstream> #include <set> #include <stack> #include <iomanip> #define INT_MAX 2147483647 // maximum (signed) int value #define INT_MIN (-2147483647 - 1) // minimum (signed) int value ; using namespace std; int Max(int a, int b) { return a > b ? a : b; } int Min(int a, int b) { return a < b ? a : b; } struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; int rmax = 0; int find_depth(TreeNode* p, int value) { if (p == nullptr || p->val != value) return 0; int left = 0, right = 0; left = find_depth(p->left,value); right = find_depth(p->right,value); return 1 + Max(left, right); } void solution(TreeNode* p) { if (p == nullptr) return; int current = find_depth(p->left, p->val) + find_depth(p->right, p->val); if (current > rmax) rmax = current; solution(p->left); solution(p->right); } int longestUnivaluePath(TreeNode* root) { solution(root); return rmax; } void printTree(TreeNode* p,int depth=0) { if (p == nullptr) return; for (int i = 0; i < depth; i++) cout << " "; cout << p->val << endl; printTree(p->left,depth+1); printTree(p->right, depth+1); } int main() { TreeNode* root = new TreeNode(1); root->left = new TreeNode(2); root->right = new TreeNode(2); TreeNode* p = root->left; p->left = new TreeNode(2); p->right = new TreeNode(2); p->left->left = new TreeNode(2); //printTree(p); p = root->right; p->left = new TreeNode(2); p->right = new TreeNode(2); printTree(root); cout << endl; cout << longestUnivaluePath(root); system("pause"); return 0; }