zoukankan      html  css  js  c++  java
  • sss

    <更新提示>

    <第一次更新>


    <正文>

    Description

    给定正整数n,m,问有多少个正整数满足:
    (1) 不含前导0;
    (2) 是m的倍数;
    (3) 可以通过重排列各个数位得到n。

    (nleq10^{20},mleq100)

    Input Format

    一行两个整数n,m。

    Output Format

    一行一个整数表示答案对998244353取模的结果。

    Sample Input

    1 1
    

    Sample Output

    1
    

    解析

    大致题意:给定一个位数不超过(20)位的正整数(n),求(n)的互异排列中有多少种情况恰为(m)的倍数,不能存在前导(0)

    假如(nleq10^{16},mleq20),那显然可以直接状压(dp)来计数,设(f[S][i])代表(n)中取数情况为(S),得到的数模(m)(i)的方案总数,可以枚举一个(j)来转移,时间复杂度(O(2^{lg_n}lg_nm))

    (nleq10^{20},mleq100)时,空间时间就都不行了。其实,在数字(n)中,很可能有多个一样的数字,而之前的状态我们把每一位数字都当做不一样的来处理,这样既费空间,又还需要额外判断重复状态。所以我们需要一种既能具体唯一表示状态,又不会有重复的状压方法。

    对于这题来说,有一种很合适的状压方法:变进制状压。我们把(0-9)每一种数字各用了几次压成一个状态,例如(0)出现了一次,那么在状态中代表的权值就是(1),同理(2)(0)代表的权值就是(2),假设有(cnt_0)(0),那么权值就分别是(1-cnt_0),但是一个(1)代表的权值就是(cnt_0+1)了,一个(1)和一个(0)代表的权值是(cnt_0+2),两个(1)代表的权值是(2cnt_0+1),以此类推,这样可以以每一个数出现的次数来不重不漏地表示每一个状态。

    显然,当每一个数字出现的次数尽可能平均时,代表的状态权值最大,实际测试可以发现最大权值不超过(60000),这样利用之前的转移方法就可以通过本题了,时间空间都没有问题。

    (Code:)

    #include <bits/stdc++.h>
    using namespace std;
    const int Mod = 998244353 , SIZE = 25 , Maxbit = 12 , M = 120 , MaxS = 60000;
    char num[SIZE];
    int m,len,cnt[Maxbit],f[MaxS][M];
    int base[Maxbit],full[Maxbit],now[Maxbit];
    inline void input(void)
    {
        scanf("%s",num+1);
        len = strlen( num + 1 );
        scanf("%d",&m);
    }
    inline void init(void)
    {
        for (int i=1;i<=len;i++)
            cnt[ num[i] - '0' ] ++;
        base[0] = 1 , full[0] = cnt[0];
        for (int i=1;i<=9;i++)
        {
            base[i] = full[i-1] + 1;
            full[i] = full[i-1] + base[i] * cnt[i];
        }
    }
    inline void dp(void)
    {
        for (int i=1;i<=9;i++)
            if ( cnt[i] )
                f[base[i]][i%m] = 1;
        for (int S=1;S<=full[9];S++)
        {
            int S_ = S;
            for (int i=9;i>=0;i--)
                if ( cnt[i] )
                    now[i] = cnt[i] - (S_/base[i]) , S_ %= base[i];
            for (int i=0;i<=9;i++)
            {
                if ( !now[i] ) continue;
                for (int j=0;j<m;j++)
                {
                    int k = ( (j*10) % m + i ) % m;
                    f[ S + base[i] ][k] = ( f[ S + base[i] ][k] + f[S][j] ) % Mod;
                }
            }
        }
    }
    int main(void)
    {
        input();
        init();
        dp();
        printf("%d
    ",f[full[9]][0]);
        return 0;
    }
    

    <后记>

  • 相关阅读:
    转--Android中调用webservice的工具类
    转--Android实现ListView过滤功能,继承于BaseAdapter,非ArrayAdapter。
    Kubernetes 1.5 配置dns
    Kubernetes 1.5安装
    HAproxy健康检查的三种方式
    某电商网站线上drbd+heartbeat+nfs配置
    sonarqube代码检测
    Sersync实时同步
    RabbitMQ配置文件
    SVNManager配置
  • 原文地址:https://www.cnblogs.com/Parsnip/p/10927827.html
Copyright © 2011-2022 走看看