zoukankan      html  css  js  c++  java
  • 统计学习方法笔记---0、读大纲

    统计学习方法笔记---0、读大纲

    一、总结

    一句话总结:

    第1章、统计学习方法【概论】;第2章、【感知机】;第3章、【k近邻法】;
    第4章、【朴素贝叶斯法】;第5章、【决策树】;第6章、【逻辑斯谛回归】与【最大熵模型】;
    第7章、【支持向量机】;第8章、【提升方法(比如AdaBoost)】;第9章、【EM算法】及其推广;
    第10章、【隐马尔可夫模型】;第11章、【条件随机场(比如概率无向图模型)】;第12章、统计学习方法【总结】;

    1、第1章、统计学习方法【概论】;第2章、【感知机】;第3章、【k近邻法】?

    第1章、统计学习方法【概论】:泛化、模型选择、过拟合等基本概念
    第2章、【感知机】:就是感知机,感知机【学习策略、学习算法】等
    第3章、【k近邻法】:就是【k近邻算法、模型、实例(kd树)】

    2、第4章、【朴素贝叶斯法】;第5章、【决策树】;第6章、【逻辑斯谛回归】与【最大熵模型】?

    第4章、【朴素贝叶斯法】:朴素贝叶斯法的【学习与分类】、朴素贝叶斯法的【参数估计】
    第5章、【决策树】:就是【特征选择、ID3、C4.5、CART、剪枝等】
    第6章、【逻辑斯谛回归】与【最大熵模型】:就是逻辑斯谛回归与最大熵模型

    3、第7章、【支持向量机】;第8章、【提升方法(比如AdaBoost)】;第9章、【EM算法】及其推广?

    第7章、【支持向量机】:线性可分支持向量机与【硬间隔最大化】、线性支持向量机与【软间隔最大化】、非线性支持向量机与【核函数】、序列最小最优化算法
    第8章、【提升方法(比如AdaBoost)】:提升方法 【Adaboost】算法、【提升树】
    第9章、【EM算法】及其推广:EM算法在高斯混合模型学习中的应用、EM算法的推广(F函数的极大-极大算法,GEM算法)

    4、第10章、【隐马尔可夫模型】;第11章、【条件随机场(比如概率无向图模型)】;第12章、统计学习方法【总结】?

    第10章、【隐马尔可夫模型】:概率计算算法、学习算法(比如Baum-Welch算法)、预测算法(近似算法、维特比算法)
    第11章、【条件随机场(比如概率无向图模型)】:概率无向图模型、条件随机场的定义与形式
    第12章、统计学习方法【总结】;

    5、统计学习方法 附录?

    附录A、【梯度下降法】
    附录B、【牛顿法和拟牛顿法】
    附录C、【拉格朗日对偶性】

    二、内容在总结中

    博客对应课程的视频位置:

     
    我的旨在学过的东西不再忘记(主要使用艾宾浩斯遗忘曲线算法及其它智能学习复习算法)的偏公益性质的完全免费的编程视频学习网站: fanrenyi.com;有各种前端、后端、算法、大数据、人工智能等课程。
    博主25岁,前端后端算法大数据人工智能都有兴趣。
    大家有啥都可以加博主联系方式(qq404006308,微信fan404006308)互相交流。工作、生活、心境,可以互相启迪。
    聊技术,交朋友,修心境,qq404006308,微信fan404006308
    26岁,真心找女朋友,非诚勿扰,微信fan404006308,qq404006308
    人工智能群:939687837

    作者相关推荐

  • 相关阅读:
    [荐]推荐一个shell学习的网站
    [转]linux远程登入不需要密码
    [转] eclipce使用vim 开启装逼模式
    Linux 下查找指令
    nmon 工具的使用
    LaTeX 符号大全
    vim 粘贴复制操作
    linux命令模式下如何切换首行和尾行
    fish 与oh-my-fish 的安装
    vim 粘贴复制操作
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/14085713.html
Copyright © 2011-2022 走看看