zoukankan      html  css  js  c++  java
  • SDNU 1311.Binomial Coeffcients

    Description

    The binomial coefficientis the number of ways of picking k unordered outcomes from n possibilities, also known as a combination or combinatorial number.

           Give n and k, you are required to calculate  mod 10000003.

    Input

    The input contains several test cases. The first line of the input contains one positive integer, c, denoting the number of test cases.

           Each of the following c lines contains two integers, n(0<=n<=1000) and k (0<=k<=n), denoting that you are required to calculatemod 10000003.

    Output

    For each test case, output one line containing mod 10000003.

    Sample Input

    3
    1 1
    10 2
    954 723
    

    Sample Output

    1
    45
    3557658
    

    Source

    Unknown
    思路:我滴娘,这道题我本来想用1245的思路去做的,但是发现连long long也存不下了,只能用数论公式:C(N, M) = C(N-1, M)+C(N-1, M-1);
    #include <cstdio>
    #include <iostream>
    #include <string>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <queue>
    #include <map>
    #include <vector>
    using namespace std;
    #define ll long long
    
    ll n, k, num[1000+8][1000+8];
    ll sum;
    
    void init()
    {
        ll sum = 1;
        num[0][0] = 1;
        for(int i = 0; i<1000+1; i++)
        {
            num[i][0] = num[i][i] = 1;
            for(int j = 1; j<i; j++)
                num[i][j] = (num[i-1][j]+num[i-1][j-1])%10000003;
        }
    }
    
    int main()
    {
        init();
        int t;
        scanf("%d", &t);
        while(t--)
        {
            scanf("%lld%lld", &n, &k);
            printf("%lld
    ", num[n][k]);
        }
        return 0;
    }
  • 相关阅读:
    centos7中如何让网卡名不被改变
    设置git使用vim作为编辑器
    vim复制时保留原有格式
    Linux添加自定义命令方法
    从graphite中删除字段信息
    jquery图片上传新思路
    注册代码
    JQ基本和层级选择器-p9-09
    DOM对象和JQ对象相互转换
    DOM对象和JQuery对象
  • 原文地址:https://www.cnblogs.com/RootVount/p/11011841.html
Copyright © 2011-2022 走看看