zoukankan      html  css  js  c++  java
  • Spark- 根据ip地址计算归属地

    主要考察的是广播变量的使用:

    1、将要广播的数据 IP 规则数据存放在HDFS上,(广播出去的内容一旦广播出去产就不能改变了,如果需要实时改变的规则,可以将规则放到Redis中)

    2、在Spark中转成RDD,然后收集到Driver端,

    3、把 IP 规则数据广播到Executor中。Driver端广播变量的引用是怎样跑到 Executor中的呢?  Task在Driver端生成的,广播变量的引用是伴随着Task被发送到Executor中的,广播变量的引用也被发送到Executor中,恰好指向HDFS

    4、Executor执行分配到的 Task时,从Executor中获取 IP 规则数据做计算。

    package com.rz.spark.base
    
    import java.sql.{Connection, DriverManager, PreparedStatement}
    
    import org.apache.spark.broadcast.Broadcast
    import org.apache.spark.rdd.RDD
    import org.apache.spark.{SparkConf, SparkContext}
    
    object IpLocation2 {
      def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
        val sc = new SparkContext(conf)
    
        // 取到HDFS中的 ip规则
        val rulesLine: RDD[String] = sc.textFile(args(0))
    
        // 整理ip规则数据
        val ipRulesRDD: RDD[(Long, Long, String)] = rulesLine.map(line => {
          val fields = line.split("[|]")
          val startNum = fields(2).toLong
          val endNum = fields(3).toLong
          val province = fields(6)
          (startNum, endNum, province)
        })
        // 将分散在多个Executor中的部分IP规则数据收集到Driver端
        val rulesInDriver: Array[(Long, Long, String)] = ipRulesRDD.collect()
        
        // 将Driver端的数据广播到Executor中
        // 调用sc上的广播方法
        // 广播变量的引用(还在Driver端中)
        val broadcastRef: Broadcast[Array[(Long, Long, String)]] = sc.broadcast(rulesInDriver)
    
        // 创建RDD,读取访问日志
        val accessLines: RDD[String] = sc.textFile(args(1))
    
        // 整理数据
        val provinceAndOne: RDD[(String, Int)] = accessLines.map(log => {
          // 将log日志的第一行进行切分
          val fields = log.split("[|]")
          val ip = fields(1)
          // 将ip转换成10进制
          val ipNum = MyUtils.ip2Long(ip)
          // 进行二分法查找,通过Driver端的引用获取到Executor中的广播变量
          // (该函数中的代码是在Executor中被调用执行的,通过广播变量的引用,就可以拿到当前Executor中的广播的ip二人规则)
          // Driver端广播变量的引用是怎样跑到 Executor中的呢?
          // Task在Driver端生成的,广播变量的引用是伴随着Task被发送到Executor中的,广播变量的引用也被发送到Executor中,恰好指向HDFS
          val rulesInExecutor: Array[(Long, Long, String)] = broadcastRef.value
          // 查找
          var province = "末知"
          val index = MyUtils.binarySearch(rulesInExecutor, ipNum)
          if (index != -1) {
            province = rulesInExecutor(index)._3
          }
          (province, 1)
        })
        // 聚合
        val reduced: RDD[(String, Int)] = provinceAndOne.reduceByKey(_+_)
        // 将结果打印
    //    val result = reduced.collect()
    //    println(result.toBuffer)
    
        // 将结果写入到MySQL中
        // 一次拿一个分区的每一条数据
        reduced.foreachPartition(it=>{
          val conn: Connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=utf-8","root","root")
          val pstm: PreparedStatement = conn.prepareStatement("insert into access_log values(?,?)")
    
          it.foreach(tp=>{
            pstm.setString(1, tp._1)
            pstm.setInt(2,tp._2)
            pstm.executeUpdate()
          })
          pstm.close()
          conn.close()
        })
    
        sc.stop()
      }
    }

    工具类

    package com.rz.spark.base
    
    import java.sql
    import java.sql.{DriverManager, PreparedStatement}
    
    import scala.io.{BufferedSource, Source}
    
    object MyUtils {
    
      def ip2Long(ip: String): Long = {
        val fragments = ip.split("[.]")
        var ipNum = 0L
        for (i <- 0 until fragments.length){
          ipNum =  fragments(i).toLong | ipNum << 8L
        }
        ipNum
      }
    
      def readRules(path: String): Array[(Long, Long, String)] = {
        //读取ip规则
        val bf: BufferedSource = Source.fromFile(path)
        val lines: Iterator[String] = bf.getLines()
        //对ip规则进行整理,并放入到内存
        val rules: Array[(Long, Long, String)] = lines.map(line => {
          val fileds = line.split("[|]")
          val startNum = fileds(2).toLong
          val endNum = fileds(3).toLong
          val province = fileds(6)
          (startNum, endNum, province)
        }).toArray
        rules
      }
    
      def binarySearch(lines: Array[(Long, Long, String)], ip: Long) : Int = {
        var low = 0
        var high = lines.length - 1
        while (low <= high) {
          val middle = (low + high) / 2
          if ((ip >= lines(middle)._1) && (ip <= lines(middle)._2))
            return middle
          if (ip < lines(middle)._1)
            high = middle - 1
          else {
            low = middle + 1
          }
        }
        -1
      }
    
      def data2MySQL(it: Iterator[(String, Int)]): Unit = {
        //一个迭代器代表一个分区,分区中有多条数据
        //先获得一个JDBC连接
        val conn: sql.Connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=UTF-8", "root", "123568")
        //将数据通过Connection写入到数据库
        val pstm: PreparedStatement = conn.prepareStatement("INSERT INTO access_log VALUES (?, ?)")
        //将分区中的数据一条一条写入到MySQL中
        it.foreach(tp => {
          pstm.setString(1, tp._1)
          pstm.setInt(2, tp._2)
          pstm.executeUpdate()
        })
        //将分区中的数据全部写完之后,在关闭连接
        if(pstm != null) {
          pstm.close()
        }
        if (conn != null) {
          conn.close()
        }
      }
    }

    pom文件

    <properties>
            <maven.compiler.source>1.8</maven.compiler.source>
            <maven.compiler.target>1.8</maven.compiler.target>
            <scala.version>2.11.8</scala.version>
            <spark.version>2.2.0</spark.version>
            <hadoop.version>2.6.5</hadoop.version>
            <encoding>UTF-8</encoding>
        </properties>
    
        <dependencies>
            <!-- 导入scala的依赖 -->
            <dependency>
                <groupId>org.scala-lang</groupId>
                <artifactId>scala-library</artifactId>
                <version>${scala.version}</version>
            </dependency>
    
            <!-- 导入spark的依赖 -->
            <dependency>
                <groupId>org.apache.spark</groupId>
                <artifactId>spark-core_2.11</artifactId>
                <version>${spark.version}</version>
            </dependency>
    
            <!-- 指定hadoop-client API的版本 -->
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-client</artifactId>
                <version>${hadoop.version}</version>
            </dependency>
    
        </dependencies>
    
        <build>
            <pluginManagement>
                <plugins>
                    <!-- 编译scala的插件 -->
                    <plugin>
                        <groupId>net.alchim31.maven</groupId>
                        <artifactId>scala-maven-plugin</artifactId>
                        <version>3.2.2</version>
                    </plugin>
                    <!-- 编译java的插件 -->
                    <plugin>
                        <groupId>org.apache.maven.plugins</groupId>
                        <artifactId>maven-compiler-plugin</artifactId>
                        <version>3.5.1</version>
                    </plugin>
                </plugins>
            </pluginManagement>
            <plugins>
                <plugin>
                    <groupId>net.alchim31.maven</groupId>
                    <artifactId>scala-maven-plugin</artifactId>
                    <executions>
                        <execution>
                            <id>scala-compile-first</id>
                            <phase>process-resources</phase>
                            <goals>
                                <goal>add-source</goal>
                                <goal>compile</goal>
                            </goals>
                        </execution>
                        <execution>
                            <id>scala-test-compile</id>
                            <phase>process-test-resources</phase>
                            <goals>
                                <goal>testCompile</goal>
                            </goals>
                        </execution>
                    </executions>
                </plugin>
    
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <executions>
                        <execution>
                            <phase>compile</phase>
                            <goals>
                                <goal>compile</goal>
                            </goals>
                        </execution>
                    </executions>
                </plugin>
    
    
                <!-- 打jar插件 -->
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-shade-plugin</artifactId>
                    <version>2.4.3</version>
                    <executions>
                        <execution>
                            <phase>package</phase>
                            <goals>
                                <goal>shade</goal>
                            </goals>
                            <configuration>
                                <filters>
                                    <filter>
                                        <artifact>*:*</artifact>
                                        <excludes>
                                            <exclude>META-INF/*.SF</exclude>
                                            <exclude>META-INF/*.DSA</exclude>
                                            <exclude>META-INF/*.RSA</exclude>
                                        </excludes>
                                    </filter>
                                </filters>
                            </configuration>
                        </execution>
                    </executions>
                </plugin>
            </plugins>
        </build>
  • 相关阅读:
    模式识别 之 BP算法
    仪器开发 之 DICOM 三维重建 HPP
    模式识别 之 BP算法 (二)
    病理分析 之 细胞分析
    脉搏血氧仪 之 算法原理
    模式识别 之 初学
    机器学习 之 模糊神经(失败总结)
    冲刺第二天
    冲刺第三天
    团队项目计划
  • 原文地址:https://www.cnblogs.com/RzCong/p/10660563.html
Copyright © 2011-2022 走看看