题目:
主要算法 : 记忆化搜索
题干:
最长不下降链
应试策略:
想到记忆化搜索,但是伪记忆化搜索,放弃了
打爆搜,卡时间
代码
#include<stdio.h> #include<stdlib.h> #include<string.h> #define LL long long #define FORa(i,s,e) for(LL i=s;i<=e;i++) #define FORs(i,s,e) for(LL i=s;i>=e;i--) #define File(name) freopen(name".in","r",stdin);freopen(name".out","w",stdout); #define gc pa==pb&&(pb=(pa=buf)+fread(buf,1,100000,stdin),stdin)?EOF:*pa++ using namespace std; inline LL read(); char buf[100000],*pa,*pb; const LL N=510,M=510; LL n,m,ans; LL t,a[N+1][M+1]; bool vis[N+1][M+1]; inline LL max(LL fa,LL fb) {return fa>fb?fa:fb;} LL mx[4]={0,0,1,-1},my[4]={1,-1,0,0}; void Dfs(LL x,LL y,LL cnt) { ans=max(ans,cnt+1); LL fx,fy; FORa(i,0,3) { fx=x+mx[i],fy=y+my[i]; if(a[fx][fy]<=a[x][y]||fx>n||fx<1||fy>m||fy<1) continue; vis[fx][fy]=1,Dfs(fx,fy,cnt+1),vis[fx][fy]=0,t++; } } int main() { File("Llll"); n=read(),m=read(); FORa(i,1,n) FORa(j,1,m) a[i][j]=read(); t=m*n; FORs(i,n,1) FORs(j,m,1) { memset(vis,0,sizeof(vis)),vis[i][j]=1,Dfs(i,j,0); if(t>2000000) { printf("%lld",ans); return 0; } } printf("%lld",ans); return 0; } inline LL read() { register LL x(0),f(1);register char c(gc); while(c<'0'||c>'9') f=c=='-'?-1:1,c=gc; while(c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=gc; return x*f; }
非完美算法:
记忆化搜索
正解:
记忆化搜索
#include<stdio.h> #include<stdlib.h> #define LL long long #define FORa(i,s,e) for(LL i=s;i<=e;i++) #define FORs(i,s,e) for(LL i=s;i>=e;i--) #define File(name) freopen(name".in","r",stdin);freopen(name".out","w",stdout); #define gc pa==pb&&(pb=(pa=buf)+fread(buf,1,100000,stdin),stdin)?EOF:*pa++ using namespace std; inline LL read(); char buf[100000],*pa,*pb; const LL N=510,M=510; LL n,m,ans; LL a[N+1][M+1],f[N+1][M+1]; inline LL max(LL fa,LL fb) {return fa>fb?fa:fb;} LL mx[4]={0,0,1,-1},my[4]={1,-1,0,0}; void Dfs(LL x,LL y,LL cnt) { if(cnt>f[x][y]) f[x][y]=cnt,ans=max(cnt,ans); else return; LL fx,fy; FORa(i,0,3) { fx=x+mx[i],fy=y+my[i]; if(a[fx][fy]<=a[x][y]||fx>n||fx<1||fy>m||fy<1) continue; Dfs(fx,fy,cnt+1); } } int main() { File("Llll"); n=read(),m=read(); FORa(i,1,n) FORa(j,1,m) a[i][j]=read(); FORa(i,1,n) FORa(j,1,m) Dfs(i,j,1); printf("%lld",ans); return 0; } inline LL read() { register LL x(0),f(1);register char c(gc); while(c<'0'||c>'9') f=c=='-'?-1:1,c=gc; while(c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=gc; return x*f; }
总结:
证明