zoukankan      html  css  js  c++  java
  • B. OR in Matrix

    B. OR in Matrix
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Let's define logical OR as an operation on two logical values (i. e. values that belong to the set {0, 1}) that is equal to 1 if either or both of the logical values is set to 1, otherwise it is 0. We can define logical OR of three or more logical values in the same manner:

    where is equal to 1 if some ai = 1, otherwise it is equal to 0.

    Nam has a matrix A consisting of m rows and n columns. The rows are numbered from 1 to m, columns are numbered from 1 to n. Element at row i (1 ≤ i ≤ m) and column j (1 ≤ j ≤ n) is denoted as Aij. All elements of A are either 0 or 1. From matrix A, Nam creates another matrix B of the same size using formula:

    .

    (Bij is OR of all elements in row i and column j of matrix A)

    Nam gives you matrix B and challenges you to guess matrix A. Although Nam is smart, he could probably make a mistake while calculating matrix B, since size of A can be large.

    Input

    The first line contains two integer m and n (1 ≤ m, n ≤ 100), number of rows and number of columns of matrices respectively.

    The next m lines each contain n integers separated by spaces describing rows of matrix B (each element of B is either 0 or 1).

    Output

    In the first line, print "NO" if Nam has made a mistake when calculating B, otherwise print "YES". If the first line is "YES", then also print m rows consisting of n integers representing matrix A that can produce given matrix B. If there are several solutions print any one.

    Sample test(s)
    Input
    2 2
    1 0
    0 0
    
    Output
    NO
    
    Input
    2 3
    1 1 1
    1 1 1
    
    Output
    YES
    1 1 1
    1 1 1
    
    Input
    2 3
    0 1 0
    1 1 1
    
    Output
    YES
    0 0 0
    0 1 0
    
    
    
    wa了几发才过、
    
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <algorithm>
    #include <cstdlib>
    using namespace std;
    
    int a[110][110], b[110][110];
    
    int main() {
    	memset(a, 0, sizeof(a));
    	memset(b, 0, sizeof(b));
    	int m, n;
    	cin >> m>> n;
    	for (int i = 0; i<m; i++) {
    		for (int j = 0; j<n; j++) {
    			cin >> a[i][j];
    			b[i][j] = 1;
    		}
    	}
    	if (m == n && m == 1) {
    		cout << "YES" << endl;
    		cout << a[0][0] << endl;
    		return 0;
    	}
    	int flag1 = 0, flag2 = 0, flag3 = 0, flag4 = 1;
    	for (int i = 0; i<m; i++) {
    		for (int j = 0; j<n; j++) {
    			if (a[i][j] == 1) {
    				flag4 = 0;
    				flag1 = 0, flag2 = 0;
    				for (int k = 0; k<n; k++) {
    					if (a[i][k] != 1)
    						flag1 ++ ;
    				}
    				for (int k = 0; k<m; k++) {
    					if (a[k][j] != 1)
    						flag2 ++ ;
    				}
    				if (flag1 == 0 && flag2 == 0)
    					flag3 ++ ;
    				else if (flag1>0 && flag2>0) {
    					cout << "NO"<< endl;
    					return 0;
    				}
    			}
    		}
    	}
    	if (flag4 == 1) {
    		cout << "YES" << endl;
    		for (int i = 0; i<m; i++) {
    			for (int j = 0; j<n-1; j++) {
    				cout << a[i][j] << " ";
    			}
    			cout << a[i][n-1] << endl;
    		}
    		cout << endl;
    		return 0;
    	}
    	if (flag3 > 0) {
    		cout << "YES"<< endl;
    		for (int i = 0; i<m; i++) {
    			for (int j = 0; j<n; j++) {
    				if (a[i][j] == 0) {
    					for (int k = 0; k<n; k++) 
    						b[i][k] = 0;
    					for (int k = 0; k<m; k++)
    						b[k][j] = 0;
    				}
    			}
    		}
    		for (int i = 0; i<m; i++) {
    			for (int j = 0; j<n-1; j++) {
    				cout << b[i][j] << " ";
    			}
    			cout << b[i][n-1] << endl;
    		} 
    		cout << endl;
    	}
    	else {
    		cout << "NO" << endl;
    	}
    	
    	return 0;
    }


  • 相关阅读:
    上传视频到七牛云django端实现
    课程全文检索接口
    搜索引擎工作原理
    创建订单并生成支付链接接口
    支付宝支付流程
    通过课程查询商品信息
    如何使用 RESTClient 调试微信支付接口
    关于HTML使用ComDlg ActiveX 无法弹出相应对话框的问题1
    Android自定义View的实现方法,带你一步步深入了解View(四)
    Android视图状态及重绘流程分析,带你一步步深入了解View(三)
  • 原文地址:https://www.cnblogs.com/Tovi/p/6194830.html
Copyright © 2011-2022 走看看