zoukankan      html  css  js  c++  java
  • 快速幂取余算法

    下面是一个快速幂的介绍:

    先贴一个秦九韶算法(Horner算法)的原理:

    设有n+1项的n次函数

    f(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+......+a_2x^2+a_1x+a_0


    将前n项提取公因子x,得

    f(x)=(a_nx^{n-1}+a_{n-1}x^{n-2}+a_{n-2}x^{n-3}+......+a_2x+a_1)x+a_0


    再将括号内的前n-1项提取公因子x,得

    f(x)=((a_nx^{n-2}+a_{n-1}x^{n-3}+a_{n-2}x^{n-4}+......+a_2)x+a_1)x+a_0


    如此反复提取公因子x,最后将函数化为

    f(x)=(((a_nx+a_{n-1})x+a_{n-2})x+......+a_1)x+a_0


    f_1=a_nx+a_{n-1}

    f_2=f_1x+a_{n-2}

    f_3=f_2x+a_{n-3}

    ......

    f_n=f_{n-1}x+a_0


    f_n即为所求

    下面是讲解快速幂的:(By  夜せ︱深   感谢作者)

    快速幂取模算法

    在网站上一直没有找到有关于快速幂算法的一个详细的描述和解释,这里,我给出快速幂算法的完整解释,用的是C语言,不同语言的读者只好换个位啦,毕竟读C的人较多~

    所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模()。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。[有读者反映在讲快速幂部分时有点含糊,所以在这里对本文进行了修改,作了更详细的补充,争取让更多的读者一目了然]

    我们先从简单的例子入手:求a^b % c = ?

    算法1.首先直接地来设计这个算法:

    int ans = 1;

    for(int i = 1;i<=b;i++)

    {

    ans = ans * a;

    }

    ans = ans % c;

    这个算法的时间复杂度体现在for循环中,为Ob.这个算法存在着明显的问题,如果ab过大,很容易就会溢出。

    那么,我们先来看看第一个改进方案:在讲这个方案之前,要先有这样一个公式:a^b%c=(a%c)^b%c.这个公式大家在离散数学或者数论当中应该学过,不过这里为了方便大家的阅读,还是给出证明:

    引理1:a^b%c = (a%c)^b%c

     

    上面公式为下面公式的引理,即积的取余等于取余的积的取余。

     

    证明了以上的公式以后,我们可以先让a关于c取余,这样可以大大减少a的大小,

    于是不用思考的进行了改进:

    算法2

    int ans = 1;

    a = a % c; //加上这一句

    for(int i = 1;i<=b;i++)

    {

    ans = ans * a;

    }

    ans = ans % c;

    聪明的读者应该可以想到,既然某个因子取余之后相乘再取余保持余数不变,那么新算得的ans也可以进行取余,所以得到比较良好的改进版本。

    算法3

    int ans = 1;

    a = a % c; //加上这一句

    for(int i = 1;i<=b;i++)

    {

    ans = (ans * a) % c;//这里再取了一次余

     

    }

    ans = ans % c;

    这个算法在时间复杂度上没有改进,仍为O(b),不过已经好很多的,但是在c过大的条件下,还是很有可能超时,所以,我们推出以下的快速幂算法。

    快速幂算法依赖于以下明显的公式,我就不证明了。

     

    那么我们可以得到以下算法:

    算法4

    int ans = 1;

    a = a % c;

    if(b%2==1)

    ans = (ans * a) mod c; //如果是奇数,要多求一步,可以提前算到ans

    k = (a*a) % c; //我们取a2而不是a

    for(int i = 1;i<=b/2;i++)

    {

    ans = (ans * k) % c;

    }

    ans = ans % c;

     

    我们可以看到,我们把时间复杂度变成了O(b/2).当然,这样子治标不治本。但我们可以看到,当我们令k = (a * a) mod c时,状态已经发生了变化,我们所要求的最终结果即为(k)b/2 mod c而不是原来的ab mod c所以我们发现这个过程是可以迭代下去的。当然,对于奇数的情形会多出一项a mod c,所以为了完成迭代,当b是奇数时,我们通过

    ans = (ans * a) % c;来弥补多出来的这一项,此时剩余的部分就可以进行迭代了。

     

    形如上式的迭代下去后,当b=0时,所有的因子都已经相乘,算法结束。于是便可以在Olog b的时间内完成了。于是,有了最终的算法:快速幂算法。

    算法5:快速幂算法

     

    int ans = 1;

    a = a % c;

    while(b>0)

    {

     

    if(b % 2 == 1)

    ans = (ans * a) % c;

    b = b/2;

    a = (a * a) % c;

    }

    将上述的代码结构化,也就是写成函数:

    int PowerMod(int a, int b, int c)

    {

    int ans = 1;

    a = a % c;

    while(b>0)

    {

     

    if(b % 2 = = 1)

    ans = (ans * a) % c;

    b = b/2;

    a = (a * a) % c;

    }

    return ans;

    }

    本算法的时间复杂度为Ologb),能在几乎所有的程序设计(竞赛)过程中通过,是目前最常用的算法之一。

    以下内容仅供参考:

    扩展:有关于快速幂的算法的推导,还可以从另一个角度来想。

    =? 求解这个问题,我们也可以从进制转换来考虑:

    10进制的b转化成2进制的表达式:

    注意此处的要么为0,要么为1,如果某一项,那么这一项就是1,这个对应了上面算法过程中b是偶数的情况,为1对应了b是奇数的情况[不要搞反了,读者自己好好分析,可以联系10进制转2进制的方法],我们从依次乘到。对于每一项的计算,计算后一项的结果时用前一项的结果的平方取余。对于要求的结果而言,为时ans不用把它乘起来,[因为这一项值为1],为1项时要乘以此项再取余。这个算法和上面的算法在本质上是一样的,读者可以自行分析,这里我说不多说了,希望本文有助于读者掌握快速幂算法的知识点,当然,要真正的掌握,不多练习是不行的。

  • 相关阅读:
    centos6安装mono
    Flashcache系统管理员手册
    【ZT】超乎想象 HTML5九大超酷特效体验
    程序员不可不知的C#代码规范
    【推薦】帮你炼成软件架构师的97件事
    [ZT]智能客户端(Smart Client)
    【ZT】成就大型高性能网站的十项规则
    通過SQL取出所有周六/周日的日期到Table
    【杯具】面试才说一句话就被轰出来了
    Integer在webservice的传递
  • 原文地址:https://www.cnblogs.com/Tovi/p/6194879.html
Copyright © 2011-2022 走看看