zoukankan      html  css  js  c++  java
  • L2范数惩罚项,高维线性回归

    %matplotlib inline
    import mxnet
    from mxnet import nd,autograd
    from mxnet import gluon,init
    from mxnet.gluon import data as gdata,loss as gloss,nn
    import gluonbook as gb
    
    
    
    n_train, n_test, num_inputs = 20,100,200
    
    true_w = nd.ones((num_inputs, 1)) * 0.01
    true_b = 0.05
    
    features = nd.random.normal(shape=(n_train+n_test, num_inputs))
    labels = nd.dot(features,true_w) + true_b
    labels += nd.random.normal(scale=0.01, shape=labels.shape)
    
    train_feature = features[:n_train,:]
    test_feature = features[n_train:,:]
    train_labels = labels[:n_train]
    test_labels = labels[n_train:]
    
    #print(features,train_feature,test_feature)
    
    # 初始化模型参数
    def init_params():
        w = nd.random.normal(scale=1, shape=(num_inputs, 1))
        b = nd.zeros(shape=(1,))
        w.attach_grad()
        b.attach_grad()
        return [w,b]
    
    
    # 定义,训练,测试
    
    batch_size = 1
    num_epochs = 100
    lr = 0.03
    
    train_iter = gdata.DataLoader(gdata.ArrayDataset(train_feature,train_labels),batch_size=batch_size,shuffle=True)
    
    # 定义网络
    def linreg(X, w, b):
        return nd.dot(X,w) + b
    
    # 损失函数
    def squared_loss(y_hat, y):
        """Squared loss."""
        return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
    
    
    # L2 范数惩罚
    def l2_penalty(w):
        return (w**2).sum() / 2
    
    def sgd(params, lr, batch_size):
        for param in params:
            param[:] = param - lr * param.grad / batch_size
    
    def fit_and_plot(lambd):
        w, b = init_params()
        train_ls, test_ls = [], []
        for _ in range(num_epochs):
            for X, y in train_iter:
                with autograd.record():
                    # 添加了 L2 范数惩罚项。
                    l = squared_loss(linreg(X, w, b), y) + lambd * l2_penalty(w)
                l.backward()
                sgd([w, b], lr, batch_size)
            train_ls.append(squared_loss(linreg(train_feature, w, b),
                                 train_labels).mean().asscalar())
            test_ls.append(squared_loss(linreg(test_feature, w, b),
                                test_labels).mean().asscalar())
        gb.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                    range(1, num_epochs + 1), test_ls, ['train', 'test'])
        print('L2 norm of w:', w.norm().asscalar())
    fit_and_plot(0)
    fit_and_plot(3)

    训练集太少,容易出现过拟合,即训练集loss远小于测试集loss,解决方案,权重衰减——(L2范数正则化)

    例如线性回归:

    loss(w1,w2,b) = 1/n * sum(x1w1 + x2w2 + b - y)^2 /2 ,平方损失函数。

    权重参数 w = [w1,w2],

    新损失函数 loss(w1,w2,b) += lambd / 2n *||w||^2

    迭代方程:

  • 相关阅读:
    ASP.NET AJAX(6)__Microsoft AJAX Library中的面向对象类型系统
    ASP.NET AJAX(8)__Microsoft AJAX Library中异步通信层的使用
    ASP.NET AJAX(4)__客户端访问WebService
    ASP.NET AJAX(10)__Authentication Service
    ASP.NET AJAX(3)__UpdatePanel
    ASP.NET AJAX(5)__JavaScript原生类型以及Microsoft AJAX Library
    ASP.NET AJAX(2)__ASP.NET 2.0 AJAX Extensions
    ASP.NET AJAX(9)__Profile Service
    Interesting Video Lecture For Computer Science, Especially for Machine Learning
    基于BindingSource的WinForm开发
  • 原文地址:https://www.cnblogs.com/TreeDream/p/10027139.html
Copyright © 2011-2022 走看看