http://acm.hdu.edu.cn/showproblem.php?pid=6638
偷学一波潘哥的二维离散化和线段树维护最大子段和。
思路是枚举上下边界,但是不需要从左到右用最大子段和dp。
用O(n)建立线段树之后,下边界在往下增长的时候,每次只会单点修改某个点的值,影响这个点的祖先。
注意离散化减去的是数组的开头指针,而lowerbound减去的是另一个东西。
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
#define lc o<<1
#define rc o<<1|1
const int MAXN = 2000 + 5;
int x[MAXN], y[MAXN], w[MAXN], x2[MAXN], y2[MAXN];
ll amax[MAXN << 2], sum[MAXN << 2], lmax[MAXN << 2], rmax[MAXN << 2];
void pushup(int o) {
sum[o] = sum[lc] + sum[rc];
lmax[o] = max(lmax[lc], lmax[rc] + sum[lc]);
rmax[o] = max(rmax[rc], rmax[lc] + sum[rc]);
amax[o] = max(max(amax[lc], amax[rc]), rmax[lc] + lmax[rc]);
}
void build(int o, int l, int r) {
if(l == r) {
sum[o] = lmax[o] = rmax[o] = amax[o] = 0;
} else {
int m = l + r >> 1;
build(lc, l, m);
build(rc, m + 1, r);
pushup(o);
}
}
void update(int o, int l, int r, int x, int v) {
if(l == r) {
sum[o] += v;
lmax[o] = rmax[o] = amax[o] = max(0ll, sum[o]);
} else {
int m = l + r >> 1;
if(x <= m)
update(lc, l, m, x, v);
if(x >= m + 1)
update(rc, m + 1, r, x, v);
pushup(o);
}
}
vector<pair<int, int> >upd[MAXN];
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int T;
while(~scanf("%d", &T)) {
while(T--) {
int n;
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%d%d%d", &x[i], &y[i], &w[i]);
x2[i] = x[i], y2[i] = y[i];
}
sort(x2 + 1, x2 + 1 + n), sort(y2 + 1, y2 + 1 + n);
int cn = unique(x2 + 1, x2 + 1 + n) - (x2 + 1);
int cm = unique(y2 + 1, y2 + 1 + n) - (y2 + 1);
for(int i = 1; i <= cn; ++i)
upd[i].clear();
for(int i = 1; i <= n; ++i) {
x[i] = lower_bound(x2 + 1, x2 + 1 + cn, x[i]) - x2;
y[i] = lower_bound(y2 + 1, y2 + 1 + cm, y[i]) - y2;
upd[x[i]].push_back({y[i], w[i]});
}
ll ans = 0;
for(int i = 1; i <= cn; ++i) {
build(1, 1, cm);
for(int j = i; j <= cn; ++j) {
for(auto ui : upd[j])
update(1, 1, cm, ui.first, ui.second);
ans = max(ans, amax[1]);
}
}
printf("%lld
", ans);
}
}
}