给你n个点m条边,保证已经是个连通图,问每次按顺序去掉给定的一条边,当前的连通块数量。
与其正过来思考当前这边会不会是桥,不如倒过来在n个点即n个连通块下建图,检查其连通性,就能知道个数了
/** @Date : 2017-09-21 23:26:20 * @FileName: HDU 4496 并查集 逆向思维.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; int n, m; PII p[N]; int ans[N];// int fa[10010]; int find(int x) { if(x != fa[x]) fa[x] = find(fa[x]); return fa[x]; } int join(int a, int b) { int x = find(a); int y = find(b); if(x != y) { fa[y] = x; return 1; } return 0; } int main() { while(~scanf("%d%d", &n, &m)) { for(int i = 0; i <= n; i++) fa[i] = i; MMF(ans); for(int i = 1; i <= m; i++) { int u, v; scanf("%d%d", &u, &v); p[i] = MP(u, v); } int cnt = n; for(int i = m; i >= 1; i--) { ans[i] = cnt; if(join(p[i].fi, p[i].se)) cnt--; } for(int i = 1; i <= m; i++) printf("%d ", ans[i]); } return 0; }