zoukankan      html  css  js  c++  java
  • PIE(二分) 分类: 二分查找 2015-06-07 15:46 9人阅读 评论(0) 收藏

    Pie

    Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 109 Accepted Submission(s): 52
     
    Problem Description
    My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.

    My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size.

    What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.
     
    Input
    One line with a positive integer: the number of test cases. Then for each test case:
    ---One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends.
    ---One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies.
     
    Output
    For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).
     
    Sample Input
    3
    3 3
    4 3 3
    1 24
    5
    10 5
    1 4 2 3 4 5 6 5 4 2
     
    Sample Output
    25.1327
    3.1416
    50.2655
     
    题目大意是要办生日Party,有n个馅饼,有f个朋友,接下来是n个馅饼的半径。然后是分馅饼了,
    注意咯自己也要,大家都要一样大,形状没什么要求,但都要是一整块的那种,也就是说不能从两个饼中
    各割一小块来凑一块,像面积为10的和6的两块饼(饼的厚度是1,所以面积和体积相等),
    如果每人分到面积为5,则10分两块,6切成5,够分3个人,如果每人6,则只能分两个了!
    题目要求我们分到的饼尽可能的大!
    
    只要注意精度问题就可以了,一般WA 都是精度问题
    运用2分搜索:
    首先用总饼的体积除以总人数,得到每个人最大可以得到的V,但是每个人手中不能有两片或多片拼成的一块饼,
    最多只能有一片分割过得饼。用2分搜索时,把0设为left,把V 设为right。mid=(left+right)/2;
    搜索条件是:以mid为标志,如果每块饼都可以分割出一个mid,那么返回true,说明每个人可以得到的饼的体积可以
    大于等于mid;如果不能分出这么多的mid,那么返回false,说明每个人可以得到饼的体积小于等于mid。
    (1)精度为:0.000001
    (2)   pi 用反余弦求出,精度更高。
     
    复制代码
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <math.h>
     4 using namespace std;
     5 double pi = acos(-1.0);
     6 int F,N;
     7 double V[10001];
     8 bool test(double x)
     9 {
    10     int num=0;
    11     for(int i = 0; i < N;i++)
    12     {
    13         num += int(V[i]/x);
    14     }
    15     if(num>=F)
    16     return true;
    17     else return false;
    18 }
    19 int main()
    20 {
    21     int t,r;
    22     double v,max,left,right,mid;
    23     scanf("%d",&t);
    24     while(t--)
    25     {
    26         scanf("%d%d",&N,&F);
    27         F = F+1;
    28         for(int i = 0; i < N; i++)
    29         {
    30             scanf("%d",&r);
    31             V[i] = pi*r*r;
    32             v += V[i];
    33         }
    34         max = v/F;
    35         left = 0.0;
    36         right = max;
    37         while((right-left)>1e-6)//注意这里的精度问题。
    38         {
    39             mid = (left+right)/2;
    40             if(test(mid))
    41             left = mid;
    42             else right = mid;
    43         }
    44         printf("%.4f
    ",mid);
    45     }
    46     return 0;
    47 }
    复制代码
  • 相关阅读:
    欧拉回路 定理
    UESTC 1087 【二分查找】
    POJ 3159 【朴素的差分约束】
    ZOJ 1232 【灵活运用FLOYD】 【图DP】
    POJ 3013 【需要一点点思维...】【乘法分配率】
    POJ 2502 【思维是朴素的最短路 卡输入和建图】
    POJ 2240 【这题貌似可以直接FLOYD 屌丝用SPFA通过枚举找正权值环 顺便学了下map】
    POJ 1860【求解是否存在权值为正的环 屌丝做的第一道权值需要计算的题 想喊一声SPFA万岁】
    POJ 1797 【一种叫做最大生成树的很有趣的贪心】【也可以用dij的变形思想~】
    js 实现slider封装
  • 原文地址:https://www.cnblogs.com/ZP-Better/p/4639605.html
Copyright © 2011-2022 走看看