Quad Tiling
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 4406 | Accepted: 2011 |
Description
Tired of the Tri Tiling game finally, Michael turns to a more challengeable game, Quad Tiling:
In how many ways can you tile a 4 × N (1 ≤ N ≤ 109) rectangle with 2 × 1 dominoes? For the answer would be very big, output the answer modulo M (0 < M ≤ 105).
Input
Input consists of several test cases followed by a line containing double 0. Each test case consists of two integers, N and M, respectively.
Output
For each test case, output the answer modules M.
Sample Input
1 10000 3 10000 5 10000 0 0
Sample Output
1 11 95
题意:在4*N的方格内塞满规格是1*2的砖头,横放竖放都可以,问一共有多少种放法。
思路:
设f(n,state):第n列铺砖状态为state时的情况数,状态state可以是:(0代表还未铺砖,1代表已被砖占据):
state 0:0
0
0
0
state 1:1
1
0
0
或者
0
0
1
1
state 2:
1
0
0
1
state 3:
0
1
1
0
state 4:
1
1
1
1
需要用到的情况就这么多,为什么呢,举个例子
先写出四行三列的格子,其中定义状态: 0 1 2 3 ... 14 15 X00 XX0 X00 XX0 X00 XX0 X00 X00 XX0 XX0 XX0 XX0 X00 X00 X00 X00 XX0 XX0 X00 X00 X00 X00 XX0 XX0 为考虑第2列的所有状态,其中x代表已被填满,0代表还是空的
再定义: 0 1 2 3 ... 14 15 XX0 XXX XX0 XXX XX0 XXX XX0 XX0 XXX XXX XXX XXX XX0 XX0 XX0 XX0 XXX XXX XX0 XX0 XX0 XX0 XXX XXX
为考虑第三列的所有状态
那么第三列中状态0可以由第2列中的哪些状态转化而来呢?显然第2列的状态0,3,9,12,15可以通过铺砖得到第三列的状态0;
而计算状态0转移过程所需要用到的状态0,3,9,12,15可以由那些状态转移得到呢?除了状态9需要用到前一列的状态0和6得到,其他状态都可以互推,不需要新的状态。
那么需要用到的状态就是一开始所说的那几种,并且转移方程可以写成如下递推式:
f(n+1, 0) = f(n, 0) + 2 * f(n, 1) + f(n, 2) + f(n, 4) f(n+1, 1) = f(n, 0) + f(n, 1) f(n+1, 2) = f(n, 0) + f(n, 3) f(n+1, 3) = f(n, 2) f(n+1, 4) = f(n, 0)
写成矩阵的形式:(f(n+1,0),f(n+1,1),f(n+1,2),f(n+1,3),f(n+1,4))=A*(f(n,0),f(n,1),f(n,2),f(n,3),f(n,4));
A=1 1 1 0 1
2 1 0 0 0
1 0 0 1 0
0 0 1 0 0
1 0 0 0 0
B=A^N,B[0][0]即是第N列砖的铺砖的所有可能数。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<vector> #include<set> #include<algorithm> #include<queue> using namespace std; typedef vector<int> vec; typedef vector<vec> mat; typedef long long ll; const int M_MAX = 100000; mat A, B; ll n; int N, M; mat mul(mat &A,mat &B,int &M) { mat C(A.size(),vec(B[0].size())); for (int i = 0; i < A.size();i++) { for (int k = 0; k < B.size();k++) { for (int j = 0; j < B[0].size();j++) { C[i][j] = (C[i][j]+A[i][k]*B[k][j]) % M; } } } return C; } mat pow(mat A,ll n){ mat B(A.size(),vec(A[0].size())); for (int i = 0; i < A.size();i++) { B[i][i] = 1; } while (n>0) { if (n & 1)B = mul(B, A,M); A = mul(A, A,M); n >>= 1; } return B; } int main() { while (scanf("%d%d",&N,&M)!=EOF&&N) { mat A(5,vec(5)); A[0][0] =A[0][1]=A[0][2]=A[0][4]=1; A[1][0] = 2; A[1][1] = 1; A[2][0] = A[2][3] = 1; A[3][2] = 1; A[4][0] = 1; A = pow(A, N); printf("%d ",A[0][0]); } return 0; }