zoukankan      html  css  js  c++  java
  • 获取包含给定子字符串的Pandas DataFrame中的所有行

     
     

    让我们看看如何在不同示例的帮助下获取包含给定子字符串的Pandas DataFrame中的所有行。

    代码1:检查'Position'列中的值PG

    # importing pandas 
    import pandas as pd 
    
    # Creating the dataframe with dict of lists 
    df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'], 
                    'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'], 
                    'Position': ['PG', 'PG', 'UG', 'PG', 'UG'], 
                    'Number': [3, 4, 7, 11, 5], 
                    'Age': [33, 25, 34, 35, 28], 
                    'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'], 
                    'Weight': [89, 79, 113, 78, 84], 
                    'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'], 
                    'Salary': [99999, 99994, 89999, 78889, 87779]}, 
                    index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5']) 
    print(df, "
    ") 
    
    print("Check PG values in Position column:
    ") 
    df1 = df['Position'].str.contains("PG") 
    print(df1) 

    输出:

    但是这个结果似乎并没有太大帮助,因为它返回带有索引的布尔值。让我们看看是否可以做得更好。
     

    代码2:获取满足条件的行

    # importing pandas as pd 
    import pandas as pd 
    
    # Creating the dataframe with dict of lists 
    df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'], 
                    'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'], 
                    'Position': ['PG', 'PG', 'UG', 'PG', 'UG'], 
                    'Number': [3, 4, 7, 11, 5], 
                    'Age': [33, 25, 34, 35, 28], 
                    'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'], 
                    'Weight': [89, 79, 113, 78, 84], 
                    'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'], 
                    'Salary': [99999, 99994, 89999, 78889, 87779]}, 
                    index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5']) 
    
    df1 = df[df['Position'].str.contains("PG")] 
    print(df1) 

    输出:

    代码3:过滤Team包含‘Boston’或大学包含“ MIT”的所有行。

    # importing pandas 
    import pandas as pd 
    
    # Creating the dataframe with dict of lists 
    df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'], 
                    'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'], 
                    'Position': ['PG', 'PG', 'UG', 'PG', 'UG'], 
                    'Number': [3, 4, 7, 11, 5], 
                    'Age': [33, 25, 34, 35, 28], 
                    'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'], 
                    'Weight': [89, 79, 113, 78, 84], 
                    'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'], 
                    'Salary': [99999, 99994, 89999, 78889, 87779]}, 
                    index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5']) 
    
    
    df1 = df[df['Team'].str.contains("Boston") | df['College'].str.contains('MIT')] 
    print(df1) 

    输出:


     
    代码4:筛选行,检查Team名称是否包含‘Boston’,Position必须为PG。

    # importing pandas module 
    import pandas as pd 
        
    # making data frame 
    df = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv") 
    
    
    df1 = df[df['Team'].str.contains('Boston') & df['Position'].str.contains('PG')] 
    df1 

    输出:


     

    代码5: Filter rows checking Position contains PG and College must contains like UC

    # importing pandas module 
    import pandas as pd 
        
    # making data frame 
    df = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv") 
    
    
    df1 = df[df['Position'].str.contains("PG") & df['College'].str.contains('UC')] 
    df1 

    输出:

  • 相关阅读:
    一文搞定 Spring Boot & Shiro 实战
    CPU 到底是怎么认识代码的?涨姿势了!
    Java 可重入锁内存可见性分析
    大牛总结的 Git 使用技巧,写得太好了!
    厉害了,如何搭建一套自己的私有网盘?
    深入浅出 Java 中 JVM 内存管理
    SLA服务可用性4个9是什么意思?怎么达到?
    解决springboot配置@ControllerAdvice不能捕获NoHandlerFoundException问题
    mybatis多参数使用方法且其中有的参数是多个值使用in查询
    Optional导致的 java.util.NoSuchElementException: No value present
  • 原文地址:https://www.cnblogs.com/a00ium/p/13875176.html
Copyright © 2011-2022 走看看