zoukankan      html  css  js  c++  java
  • ACM_完全背包

    背包3

    Time Limit: 2000/1000ms (Java/Others)

    Problem Description:

    有n种(每一种有无数个)重量和价值分别为Wi,Vi的物品,现从这些物品中挑选出总量不超过W的物品,求所有方案中价值总和的最大值

    Input:

    输入包含多组测试用例,每一例的开头为两位整数 n、W(1<=n<=10000,1<=W<=1000),接下来有 n 行,每一行有两位整数 Wi、Vi(1<=Wi<=10000,1<=Vi<=100)

    Output:

    输出为一行,即所有方案中价值总和的最大值。

    Sample Input:

    3 4
    1 2
    2 5
    3 7
    3 5
    2 3
    3 4
    4 5
    

    Sample Output:

    10
    7
    解题思路:简单的完全背包。和01背包一样,dp[i][j]表示从前i种物品中挑选总重量不超过j时总价值的最大值。
    易得状态转移方程:dp[i,j]=max(dp[i-1,j-k*wi]+k*vi)(0<=k*wi<=W),其中dp[i-1,j-k*wi]+k*vi表示前i-1种物品中选取若干件物品放入剩余容量为j-k*wi的背包中所能得到的最大价值加上k件第i种物品。很明显,多了一个参数k,时间复杂度变为O(nW∑(W/wi)),可知这样的时间复杂度是很大的,我们必须找到更优的办法。
    因为在dp[i,j]的计算中选择k(k>=1)个物品得到的最大价值与在dp[i][j-wi](背包中已包含至少一件第i种物品)的计算中选择k-1个物品得到的最大价值是相同的,所以dp[i][j]的递推中k>=1部分的计算已经在dp[i][j-wi]的计算中完成了。那么有如下推导过程:
    dp[i,j-wi]=max(dp[i-1,j],dp[i-1,(j-wi)-(k-1)*wi]+(k-1)*vi)(k>=1,dp[i-1,j]表示第i种物品一件都不选)
    =max(dp[i-1,j],dp[i-1,j-k*wi]+(k-1)*vi)(k>=1,表示当前背包中至少含有一件第i种物品)
    dp[i,j]=max(dp[i-1,j],dp[i-1,j-k*wi]+k*vi)(k>=1)
        =max(dp[i-1,j],dp[i,j-wi]+vi)
    于是成功地把参数k给消掉了,现在的时间复杂度和01背包一样都为O(nW)。
    怎么理解上面的状态转移方程呢?①如果第i件物品一件都不取,显然dp[i,j]=dp[i-1,j];②如果要取,那么当前背包中至少已含有一件第i种物品(即j至少已含有一个wi),则dp[i,j]=dp[i,j-wi]+vi。因为01背包中每个物品只有一件,在放入第i件物品时需考虑到前i-1件物品放入剩余背包容量为j-wi得到的最大价值,但是现在每个物品拥有无限件,即无需考虑前i-1个物品了,所要考虑的就是当前容量下能否再放入一件第i种物品,而dp[i,j-wi]已确保dp[i,j]中至少有一件第i种物品,所以要预留wi的背包容量再来存放一件第i种物品,这样就实现了一个物品可以取多件的操作。
    同样地,完全背包空间也可以优化到O(W)。怎么实现呢?只需将01背包第二重循环正序枚举即可。为什么呢?通过模拟过程可以发现,正序使得一个物品可以被取多次。因为01背包中按照W递减来循环是为了保证第i次循环中的状态dp[i,j]是由状态dp[i-1,j-wi]递推而来,换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果dp[i−1,j−wi]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果dp[i,j-wi],所以就可以并且必须采用wi~W递增的顺序循环。
    一维滚动数组状态转移方程:dp[j]=max(dp[j],dp[j-w[i]]+v[i])。
    AC代码一:(二维数组实现)
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 int n,W,v[10005],w[10005],dp[1005][1005];
     4 int main(){
     5     while(cin>>n>>W){
     6         for(int i=1;i<=n;++i)cin>>w[i]>>v[i];
     7         memset(dp,0,sizeof(dp));
     8         for(int i=1;i<=n;++i){
     9             for(int j=0;j<=W;++j){
    10                 if(j<w[i])dp[i][j]=dp[i-1][j];//当前容量j容纳不下一件第i种物品
    11                 else dp[i][j]=max(dp[i-1][j],dp[i][j-w[i]]+v[i]);//再拿一件第i种物品和一件都不拿的情况比一下
    12             }
    13         }
    14         cout<<dp[n][W]<<endl;
    15     }
    16     return 0;
    17 }
    AC代码二:(一维数组实现)
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 int n,W,v[10005],w[10005],dp[1005];
     4 int main(){
     5     while(cin>>n>>W){
     6         for(int i=0;i<n;i++)
     7             cin>>w[i]>>v[i];
     8         memset(dp,0,sizeof(dp));
     9         for(int i=0;i<n;++i)   //种类
    10             for(int j=w[i];j<=W;++j) //重量从小到大枚举
    11                 dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
    12         cout<<dp[W]<<endl;
    13     }
    14     return 0;
    15 }
  • 相关阅读:
    控制台程序添加滚轮滑动支持
    【SpringCloud】Eureka注册中心(二)
    【SpringCloud】快速入门(一)
    【SpringBoot】SpringBoot 之RestTemplate的使用
    【Application】Docker 安装 Redis(七)
    【Application】Docker 安装 MySQL(六)
    【Application】Docker DockerFile解析(五)
    【Application】Docker 容器数据卷(四)
    【Application】Docker 常用命令(三)
    【Application】Docker 基本使用(二)
  • 原文地址:https://www.cnblogs.com/acgoto/p/8998937.html
Copyright © 2011-2022 走看看