zoukankan      html  css  js  c++  java
  • UVa1453或La4728 凸包+枚举(或旋转卡壳)

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4199

    没想透为啥旋转卡壳跟枚举跑时间差不多。n太小吧!

    枚举法:

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    using namespace std;
    const int maxn = 100050;
    const int maxe = 100000;
    const int INF = 0x3f3f3f;
    const double eps = 1e-8;
    const double PI = acos(-1.0);
    
    struct Point{
        double x,y;
        Point(double x=0, double y=0) : x(x),y(y){ }    //构造函数
    };
    typedef Point Vector;
    
    Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
    Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
    Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);}
    Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);}
    
    bool operator < (const Point& a,const Point& b){
        return a.x < b.x ||( a.x == b.x && a.y < b.y);
    }
    
    int dcmp(double x){
        if(fabs(x) < eps) return 0;
        else              return x < 0 ? -1 : 1;
    }
    bool operator == (const Point& a, const Point& b){
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
    }
    
    ///向量(x,y)的极角用atan2(y,x);
    double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
    double Length(Vector A)    { return Dot(A,A); }
    double Angle(Vector A, Vector B)  { return acos(Dot(A,B) / Length(A) / Length(B)); }
    double Cross(Vector A, Vector B)  { return A.x*B.y - A.y * B.x; }
    
    //凸包:
    /**Andrew算法思路:首先按照先x后y从小到大排序(这个地方没有采用极角逆序排序,所以要进行两次扫描),删除重复的点后得到的序列p1,p2.....,然后把p1和p2放到凸包中。从p3开始,当新的
    点在凸包“前进”方向的左边时继续,否则依次删除最近加入凸包的点,直到新点在左边;**/
    
    //Goal[]数组模拟栈的使用;
    int ConvexHull(Point* P,int n,Point* Goal){
        sort(P,P+n);
        int m = unique(P,P+n) - P;    //对点进行去重;
        int cnt = 0;
        for(int i=0;i<m;i++){       //求下凸包;
            while(cnt>1 && dcmp(Cross(Goal[cnt-1]-Goal[cnt-2],P[i]-Goal[cnt-2])) <= 0)  cnt--;
            Goal[cnt++] = P[i];
        }
        int temp = cnt;
        for(int i=m-2;i>=0;i--){     //逆序求上凸包;
            while(cnt>temp && dcmp(Cross(Goal[cnt-1]-Goal[cnt-2],P[i]-Goal[cnt-2])) <= 0) cnt--;
            Goal[cnt++] = P[i];
        }
        if(cnt > 1) cnt--;  //减一为了去掉首尾重复的;
        return cnt;
    }
    /*********************************分割线******************************/
    
    Point P[maxn*4],Goal[maxn*4];
    int n;
    
    int main()
    {
        //freopen("E:\acm\input.txt","r",stdin);
        int T;
        cin>>T;
        while(T--){
            cin>>n;
            int cnt = 0;
            double x,y,w;
            for(int i=1;i<=n;i++){
                scanf("%lf %lf %lf",&x,&y,&w);
                P[cnt++] = Point(x,y);
                P[cnt++] = Point(x+w,y);
                P[cnt++] = Point(x,y+w);
                P[cnt++] = Point(x+w,y+w);
            }
            cnt = ConvexHull(P,cnt,Goal);
            double Maxlen = 0;
            for(int i=0;i<cnt;i++)
               for(int j=i+1;j<cnt;j++){
                 Maxlen = max(Maxlen,Length(Goal[j]-Goal[i]));
            }
            printf("%.lf
    ",Maxlen);
        }
        return 0;
    }
    View Code

    旋转卡壳:

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    using namespace std;
    const int maxn = 100500;
    const int maxe = 100000;
    const int INF = 0x3f3f3f;
    const double eps = 1e-8;
    const double PI = acos(-1.0);
    
    struct Point{
        double x,y;
        Point(double x=0, double y=0) : x(x),y(y){ }    //构造函数
    };
    typedef Point Vector;
    
    Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
    Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
    Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);}
    Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);}
    
    bool operator < (const Point& a,const Point& b){
        return a.x < b.x ||( a.x == b.x && a.y < b.y);
    }
    
    int dcmp(double x){
        if(fabs(x) < eps) return 0;
        else              return x < 0 ? -1 : 1;
    }
    bool operator == (const Point& a, const Point& b){
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
    }
    
    ///向量(x,y)的极角用atan2(y,x);
    double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
    double Length(Vector A)    { return Dot(A,A); }
    double Angle(Vector A, Vector B)  { return acos(Dot(A,B) / Length(A) / Length(B)); }
    double Cross(Vector A, Vector B)  { return A.x*B.y - A.y * B.x; }
    
    //凸包:
    /**Andrew算法思路:首先按照先x后y从小到大排序(这个地方没有采用极角逆序排序,所以要进行两次扫描),删除重复的点后得到的序列p1,p2.....,然后把p1和p2放到凸包中。从p3开始,当新的
    点在凸包“前进”方向的左边时继续,否则依次删除最近加入凸包的点,直到新点在左边;**/
    // 如果不希望在凸包的边上有输入点,把两个 <= 改成 <
    //Goal[]数组模拟栈的使用;
    int ConvexHull(Point* P,int n,Point* Goal){
        sort(P,P+n);
        int m = unique(P,P+n) - P;    //对点进行去重;
        int cnt = 0;
        for(int i=0;i<m;i++){       //求下凸包;
            while(cnt>1 && dcmp(Cross(Goal[cnt-1]-Goal[cnt-2],P[i]-Goal[cnt-2])) <= 0)  cnt--;
            Goal[cnt++] = P[i];
        }
        int temp = cnt;
        for(int i=m-2;i>=0;i--){     //逆序求上凸包;
            while(cnt>temp && dcmp(Cross(Goal[cnt-1]-Goal[cnt-2],P[i]-Goal[cnt-2])) <= 0) cnt--;
            Goal[cnt++] = P[i];
        }
        if(cnt > 1) cnt--;  //减一为了去掉首尾重复的;
        return cnt;
    }
    //旋转卡壳可以用于求凸包的直径、宽度,两个不相交凸包间的最大距离和最小距离
    //计算凸包直径,输入凸包Goal,顶点个数为n,按逆时针排列,输出直径的平方
    double RotatingCalipers(Point* Goal,int n){
        double ret = 0;
        Goal[n]=Goal[0];  //补上使凸包成环;
        int pv = 1;
        for(int i=0;i<n;i++){   //枚举边Goal[i]Goal[i+1],与最远顶点Goal[pv];利用叉积求面积的方法求最大直径;;
            while(fabs(Cross(Goal[i+1]-Goal[pv+1],Goal[i]-Goal[pv+1]))>fabs(Cross(Goal[i+1]-Goal[pv],Goal[i]-Goal[pv])))
                  pv = (pv+1)%n;
            ret=max(ret,max(Length(Goal[i]-Goal[pv]),Length(Goal[i+1]-Goal[pv+1]))); //这个地方不太好理解,就是要考虑当pv与pv+1所在直线平行于i与i+1的情况;
        }
        return ret;
    }
    /*********************************分割线******************************/
    
    Point P[maxn*4],Goal[maxn*4];
    int n;
    
    int main()
    {
        //freopen("E:\acm\input.txt","r",stdin);
        int T;
        cin>>T;
        while(T--){
            cin>>n;
            int cnt = 0;
            double x,y,w;
            for(int i=1;i<=n;i++){
                scanf("%lf %lf %lf",&x,&y,&w);
                P[cnt++] = Point(x,y);
                P[cnt++] = Point(x+w,y);
                P[cnt++] = Point(x,y+w);
                P[cnt++] = Point(x+w,y+w);
            }
            cnt = ConvexHull(P,cnt,Goal);
            double Maxlen = RotatingCalipers(Goal,cnt);
            printf("%.lf
    ",Maxlen);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Jmeter+Ant+Jenkins搭建持续集成的接口测试(推荐 Mark)
    配置sonar、jenkins进行持续审查
    查看端口占用
    CentOS 6.5系统上安装SVN服务器端的方法及目录访问权限配置(转总结)
    Windows批处理 调用程序后 不等待子进程 父进程继续执行命令
    Jmeter笔记:响应断言详解
    Ubuntu 16.04常用快捷键
    如何永久激活(破解) IntelliJ IDEA 2018.2
    Cobbler自动化部署
    Typora使用说明(记录总结)
  • 原文地址:https://www.cnblogs.com/acmdeweilai/p/3258242.html
Copyright © 2011-2022 走看看