题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4199
没想透为啥旋转卡壳跟枚举跑时间差不多。n太小吧!
枚举法:
#include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<queue> using namespace std; const int maxn = 100050; const int maxe = 100000; const int INF = 0x3f3f3f; const double eps = 1e-8; const double PI = acos(-1.0); struct Point{ double x,y; Point(double x=0, double y=0) : x(x),y(y){ } //构造函数 }; typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);} Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);} Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);} Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){ return a.x < b.x ||( a.x == b.x && a.y < b.y); } int dcmp(double x){ if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b){ return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } ///向量(x,y)的极角用atan2(y,x); double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; } double Length(Vector A) { return Dot(A,A); } double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } //凸包: /**Andrew算法思路:首先按照先x后y从小到大排序(这个地方没有采用极角逆序排序,所以要进行两次扫描),删除重复的点后得到的序列p1,p2.....,然后把p1和p2放到凸包中。从p3开始,当新的 点在凸包“前进”方向的左边时继续,否则依次删除最近加入凸包的点,直到新点在左边;**/ //Goal[]数组模拟栈的使用; int ConvexHull(Point* P,int n,Point* Goal){ sort(P,P+n); int m = unique(P,P+n) - P; //对点进行去重; int cnt = 0; for(int i=0;i<m;i++){ //求下凸包; while(cnt>1 && dcmp(Cross(Goal[cnt-1]-Goal[cnt-2],P[i]-Goal[cnt-2])) <= 0) cnt--; Goal[cnt++] = P[i]; } int temp = cnt; for(int i=m-2;i>=0;i--){ //逆序求上凸包; while(cnt>temp && dcmp(Cross(Goal[cnt-1]-Goal[cnt-2],P[i]-Goal[cnt-2])) <= 0) cnt--; Goal[cnt++] = P[i]; } if(cnt > 1) cnt--; //减一为了去掉首尾重复的; return cnt; } /*********************************分割线******************************/ Point P[maxn*4],Goal[maxn*4]; int n; int main() { //freopen("E:\acm\input.txt","r",stdin); int T; cin>>T; while(T--){ cin>>n; int cnt = 0; double x,y,w; for(int i=1;i<=n;i++){ scanf("%lf %lf %lf",&x,&y,&w); P[cnt++] = Point(x,y); P[cnt++] = Point(x+w,y); P[cnt++] = Point(x,y+w); P[cnt++] = Point(x+w,y+w); } cnt = ConvexHull(P,cnt,Goal); double Maxlen = 0; for(int i=0;i<cnt;i++) for(int j=i+1;j<cnt;j++){ Maxlen = max(Maxlen,Length(Goal[j]-Goal[i])); } printf("%.lf ",Maxlen); } return 0; }
旋转卡壳:
#include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<queue> using namespace std; const int maxn = 100500; const int maxe = 100000; const int INF = 0x3f3f3f; const double eps = 1e-8; const double PI = acos(-1.0); struct Point{ double x,y; Point(double x=0, double y=0) : x(x),y(y){ } //构造函数 }; typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);} Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);} Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);} Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){ return a.x < b.x ||( a.x == b.x && a.y < b.y); } int dcmp(double x){ if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b){ return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } ///向量(x,y)的极角用atan2(y,x); double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; } double Length(Vector A) { return Dot(A,A); } double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } //凸包: /**Andrew算法思路:首先按照先x后y从小到大排序(这个地方没有采用极角逆序排序,所以要进行两次扫描),删除重复的点后得到的序列p1,p2.....,然后把p1和p2放到凸包中。从p3开始,当新的 点在凸包“前进”方向的左边时继续,否则依次删除最近加入凸包的点,直到新点在左边;**/ // 如果不希望在凸包的边上有输入点,把两个 <= 改成 < //Goal[]数组模拟栈的使用; int ConvexHull(Point* P,int n,Point* Goal){ sort(P,P+n); int m = unique(P,P+n) - P; //对点进行去重; int cnt = 0; for(int i=0;i<m;i++){ //求下凸包; while(cnt>1 && dcmp(Cross(Goal[cnt-1]-Goal[cnt-2],P[i]-Goal[cnt-2])) <= 0) cnt--; Goal[cnt++] = P[i]; } int temp = cnt; for(int i=m-2;i>=0;i--){ //逆序求上凸包; while(cnt>temp && dcmp(Cross(Goal[cnt-1]-Goal[cnt-2],P[i]-Goal[cnt-2])) <= 0) cnt--; Goal[cnt++] = P[i]; } if(cnt > 1) cnt--; //减一为了去掉首尾重复的; return cnt; } //旋转卡壳可以用于求凸包的直径、宽度,两个不相交凸包间的最大距离和最小距离 //计算凸包直径,输入凸包Goal,顶点个数为n,按逆时针排列,输出直径的平方 double RotatingCalipers(Point* Goal,int n){ double ret = 0; Goal[n]=Goal[0]; //补上使凸包成环; int pv = 1; for(int i=0;i<n;i++){ //枚举边Goal[i]Goal[i+1],与最远顶点Goal[pv];利用叉积求面积的方法求最大直径;; while(fabs(Cross(Goal[i+1]-Goal[pv+1],Goal[i]-Goal[pv+1]))>fabs(Cross(Goal[i+1]-Goal[pv],Goal[i]-Goal[pv]))) pv = (pv+1)%n; ret=max(ret,max(Length(Goal[i]-Goal[pv]),Length(Goal[i+1]-Goal[pv+1]))); //这个地方不太好理解,就是要考虑当pv与pv+1所在直线平行于i与i+1的情况; } return ret; } /*********************************分割线******************************/ Point P[maxn*4],Goal[maxn*4]; int n; int main() { //freopen("E:\acm\input.txt","r",stdin); int T; cin>>T; while(T--){ cin>>n; int cnt = 0; double x,y,w; for(int i=1;i<=n;i++){ scanf("%lf %lf %lf",&x,&y,&w); P[cnt++] = Point(x,y); P[cnt++] = Point(x+w,y); P[cnt++] = Point(x,y+w); P[cnt++] = Point(x+w,y+w); } cnt = ConvexHull(P,cnt,Goal); double Maxlen = RotatingCalipers(Goal,cnt); printf("%.lf ",Maxlen); } return 0; }