zoukankan      html  css  js  c++  java
  • opencv 摄像头人脸检测

    PYTHON

    ubuntu16.04 默认安装的Python版本2.7.12,当用pip install opencv-python 安装了opencv for python 3.3.0.10后,运行命令

    python -c "import cv2;cap=cv2.VideoCapture(0);print(cv2.isOpened())"

    输出为false

    经过各种百度,安装其他包文件也没有解决问题。

    索性回头运行命令:pip uninstall opencv-python,卸载opencv for python 3.3.0.10

    这时候再运行

    python -c "import cv2;cap=cv2.VideoCapture(0);print(cv2.isOpened())"

    输出为true

    这时opencv for python 的版本是2.4.9.1

    可运行命令 python -c "import cv2;print(cv2.__version__)"查看opencv的版本


    因此得出结论,python2.7.12 与opencv for python 3.3.0.10 搭配不能正常工作。建议各位不要装新版的opencv for python。

    #coding:utf-8
    #http://blog.csdn.net/lance313/article/details/53885409
    import os
    import numpy
    from PIL import Image,ImageDraw
    import cv2
    
    
    cap = cv2.VideoCapture(0)
    fps = cap.get(cv2.cv.CV_CAP_PROP_FPS)
    size = (int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
    fourcc = cv2.cv.CV_FOURCC('I','4','2','0')
    #video = cv2.VideoWriter("aaa.avi", fourcc, 5, size)
    print cap.isOpened()
    
    classifier=cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
    
    index = 0;
    count=0
    while count > -1:
        ret,img = cap.read()
        faceRects = classifier.detectMultiScale(img, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,(20,20))
    
        if len(faceRects)>0:
            for faceRect in faceRects:
                    x, y, w, h = faceRect
                    cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0),2,0)
                    print "save faceimg"
                    face_win = img[int(y):int(y) + int(h), int(x):int(x) + int(w)]
                    cv2.imwrite('faceimg/index' + str(index) + '.bmp', face_win)
                    index +=1
        #facenet
        #video.write(img)
        cv2.imshow('video',img)
        key=cv2.waitKey(1)
        if key==ord('q'):
            break
    
    #video.release()
    cap.release()
    cv2.destroyAllWindows()
    #coding:utf-8
    #http://blog.csdn.net/lance313/article/details/53885409
    import os
    import numpy
    from PIL import Image,ImageDraw
    import cv2
    
    
    cap = cv2.VideoCapture(0)
    fps = cap.get(cv2.cv.CV_CAP_PROP_FPS)
    size = (int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
    fourcc = cv2.cv.CV_FOURCC('I','4','2','0')
    #video = cv2.VideoWriter("aaa.avi", fourcc, 5, size)
    print cap.isOpened()
    
    classifier=cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
    
    count=0
    while count > -1:
        ret,img = cap.read()
        faceRects = classifier.detectMultiScale(img, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,(20,20))
        if len(faceRects)>0:
            for faceRect in faceRects:
                    x, y, w, h = faceRect
                    cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0),2,0)
        #video.write(img)
        cv2.imshow('video',img)
        key=cv2.waitKey(1)
        if key==ord('q'):
            break
    
    #video.release()
    cap.release()
    cv2.destroyAllWindows()
    
    
    # import cv2
    #
    # capture=cv2.VideoCapture(0)
    # #将capture保存为motion-jpeg,cv_fourcc为保存格式
    # size = (int(capture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
    #         int(capture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
    # #cv_fourcc值要设置对,不然无法写入,而且不报错,坑
    # #video=cv2.VideoWriter("VideoTest.avi", cv2.cv.CV_FOURCC('I','4','2','0'), 30, size)
    # #isopened可以查看摄像头是否开启
    # print capture.isOpened()
    # num=0
    # #要不断读取image需要设置一个循环
    # while True:
    #     ret,img=capture.read()
    #     #视频中的图片一张张写入
    #     #video.write(img)
    #     cv2.imshow('Video',img)
    #     key=cv2.waitKey(1)#里面数字为delay时间,如果大于0为刷新时间,
    #     #超过指定时间则返回-1,等于0没有返回值,但也可以读取键盘数值,
    #     #cv2.imwrite('%s.jpg'%(str(num)),img)
    #     num=num+1
    #     if key==ord('q'):#ord为键盘输入对应的整数,
    #         break
    # video.release()
    # #如果不用release方法的话无法储存,要等结束程序再等摄像头关了才能显示保持成功
    # capture.release()#把摄像头也顺便关了
    #
    # cv2.destroyAllWindows()
    
    
    
    # OpenCV视频抓取好简单,主要用videowriter就可以了,主要要注意的是OpenCV中的抓取是放在内存中的,所以需要一个释放命令,不然就只能等到程序关闭后进行垃圾回收时才能释放了。视频抓取就不上图了。
    #
    # 然后是脸部识别,OpenCV自带了很多特征库有脸部,眼睛的还有很多,原理都一样,只是眼睛的库识别率视乎并不高,直接上代码:
    
    
    
    # import cv2
    # import cv2.cv as cv
    #
    # img = cv2.imread("face1.jpg")
    #
    # def detect(img, cascade):
    #     '''detectMultiScale函数中smallImg表示的是要检测的输入图像为smallImg,
    # faces表示检测到的人脸目标序列,1.3表示每次图像尺寸减小的比例为1.3,
    #  4表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸),
    #  CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(20, 20)为目标的最小最大尺寸'''
    #     rects = cascade.detectMultiScale(img, scaleFactor=1.3,
    #                                     minNeighbors=5, minSize=(30, 30), flags = cv.CV_HAAR_SCALE_IMAGE)
    #     if len(rects) == 0:
    #         return []
    #     rects[:,2:] += rects[:,:2]
    #     print rects
    #     return rects
    #
    # #在img上绘制矩形
    # def draw_rects(img, rects, color):
    #     for x1, y1, x2, y2 in rects:
    #         cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
    #
    #
    # #转换为灰度图
    # gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    # #直方图均衡处理
    # gray = cv2.equalizeHist(gray)
    #
    # #脸部特征分类地址,里面还有其他
    # cascade_fn = 'haarcascade_frontalface_alt.xml'
    #
    # #读取分类器,CascadeClassifier下面有一个detectMultiScale方法来得到矩形
    # cascade = cv2.CascadeClassifier(cascade_fn)
    #
    # #通过分类器得到rects
    # rects = detect(gray, cascade)
    #
    # #vis为img副本
    # vis = img.copy()
    #
    # #画矩形
    # draw_rects(vis, rects, (0, 255, 0))
    #
    # cv2.imshow('facedetect', vis)
    #
    # cv2.waitKey(0)
    # cv2.destroyAllWindows()

    C++

    //---------------------------------【头文件、命名空间包含部分】----------------------------
    // 描述:包含程序所使用的头文件和命名空间
    //http://blog.csdn.net/gdut2015go/article/details/48825063
    //-------------------------------------------------------------------------------------------------
    #include "opencv2/objdetect/objdetect.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include "opencv2/imgproc/imgproc.hpp"
    #include <iostream>
    #include <stdio.h>
    using namespace std;
    using namespace cv;
    void detectAndDisplay( Mat frame );
    //--------------------------------【全局变量声明】----------------------------------------------
    // 描述:声明全局变量
    //-------------------------------------------------------------------------------------------------
    //注意,需要把"haarcascade_frontalface_alt.xml"和"haarcascade_eye_tree_eyeglasses.xml"这两个文件复制到工程路径下
    String face_cascade_name = "haarcascade_frontalface_alt.xml";
    String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
    CascadeClassifier face_cascade;
    CascadeClassifier eyes_cascade;
    string window_name = "Capture - Face detection";
    RNG rng(12345);
    //--------------------------------【help( )函数】----------------------------------------------
    // 描述:输出帮助信息
    //-------------------------------------------------------------------------------------------------
    static void ShowHelpText()
    {
    //输出欢迎信息和OpenCV版本
    cout <<"
    
    			非常感谢购买《OpenCV3编程入门》一书!
    "
    <<"
    
    			此为本书OpenCV2版的第11个配套示例程序
    "
    << "
    
    			   当前使用的OpenCV版本为:" << CV_VERSION
    <<"
    
      ----------------------------------------------------------------------------" ;
    }
    //-----------------------------------【main( )函数】--------------------------------------------
    // 描述:控制台应用程序的入口函数,我们的程序从这里开始
    //-------------------------------------------------------------------------------------------------
    int main( void )
    {
      VideoCapture capture;
      Mat frame;
      //-- 1. 加载级联(cascades)
      if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading
    "); return -1; };
      if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading
    "); return -1; };
      //-- 2. 读取视频
      capture.open(0);
      ShowHelpText();
      if( capture.isOpened() )
      {
        for(;;)
        {
          capture >> frame;
          //-- 3. 对当前帧使用分类器(Apply the classifier to the frame)
          if( !frame.empty() )
           { detectAndDisplay( frame ); }
          else
           { printf(" --(!) No captured frame -- Break!"); break; }
          int c = waitKey(10);
          if( (char)c == 'c' ) { break; }
        }
      }
      return 0;
    }
    void detectAndDisplay( Mat frame )
    {
       std::vector<Rect> faces;
       Mat frame_gray;
       cvtColor( frame, frame_gray, COLOR_BGR2GRAY );
       equalizeHist( frame_gray, frame_gray );
       //-- 人脸检测
       face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
       for( size_t i = 0; i < faces.size(); i++ )
        {
          Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 );
          ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2), 0, 0, 360, Scalar( 255, 0, 255 ), 2, 8, 0 );
          // Mat faceROI = frame_gray( faces[i] );
          // std::vector<Rect> eyes;
          // //-- 在脸中检测眼睛
          // eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) );
          // for( size_t j = 0; j < eyes.size(); j++ )
          //  {
          //    Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 );
          //    int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
          //    circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 3, 8, 0 );
          //  }
        }
       //-- 显示最终效果图
       imshow( window_name, frame );
    
    }

     CMakeLists.txt

        cmake_minimum_required(VERSION 2.8)  
        project(DisplayImage)  
        find_package(OpenCV REQUIRED)  
        add_executable(DisplayImage DisplayImage.cpp)  
        target_link_libraries(DisplayImage ${OpenCV_LIBS}) 

  • 相关阅读:
    UltraSoft
    UltraSoft
    UltraSoft
    UltraSoft
    UltraSoft
    [技术博客] 使用邮箱验证并激活账户
    OO第一单元作业总结
    OO第一单元总结
    buaaoo_second_assignment
    buaaoo_first_improvement
  • 原文地址:https://www.cnblogs.com/adong7639/p/7779306.html
Copyright © 2011-2022 走看看