zoukankan      html  css  js  c++  java
  • ACM学习历程—HDU5265 pog loves szh II(策略 && 贪心 && 排序)

    Description

    Pog and Szh are playing games.There is a sequence with $n$ numbers, Pog will choose a number A from the sequence. Szh will choose an another number named B from the rest in the sequence. Then the score will be $(A+B)$ mod $p$.They hope to get the largest score.And what is the largest score?      
                  

    Input

    Several groups of data (no more than $5$ groups,$n geq 1000$).       
    For each case:        
    The following line contains two integers,$n(2 leq n leq 100000)$,$p(1 leq p leq 2^{31}-1)$。       
    The following line contains $n$ integers $a_i(0 leq a_i leq 2^{31}-1)$。      
           

    Output

    For each case,output an integer means the largest score.      
                  

    Sample Input

    4 4
    1 2 3 0
    4 4
    0 0 2 2
                  

    Sample Output

    3
    2

    首先对所有的数模p再排序是没有问题的。

    然后就是怎么求模p的最大值。

    首先如果a[n-2]+a[n-1]小于p,自然最大值就是它。

    然而打BC的时候并没有考虑透彻,然后想对最大值进行枚举,看能不能凑到这个最大值,因为直接暴力枚举会T,然后想二分,但是貌似不能直接二分,于是我还是设了一个左值lt和右值rt,rt自然初始为p-1,而lt初始值可以取a[0]+a[n-1]和a[n-2]+a[n-1]里面较大的。然后就是如果mid值能凑到,自然更新lt为mid值,然后判断rt能否取到,否则自减,然而这样是过不了极限数据的。不过貌似OJ测试数据并没有,这样是可以过的。。。不过当时没考虑int爆掉,还有二分也写搓被Hack掉了。

    然后就是正规做法了:

    考虑到之前模过后进行的排序,所以任意两个数相加的和比p大的值要小于p,所以减一次就能比p小,所以最大值只有两种可能,x+y或x+y-p。

    然后对于后者,最大自然是a[n-2]+a[n-1]-p(在得到它们和大于p的前提下),然后只用找x+y的最大了。

    然后从小到大枚举每个x,y自然是从大到小排除,得到首个比p小的。

    由于对于x+c来说,x+c+y > x+y,所以,如果之前x+y超过p的,x+c+y自然也超过p了。所以往后的y不需要返回继续减小即可。

    暴力枚举代码:

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #define LL long long
    
    using namespace std;
    
    int n;
    LL s[100010], p;
    
    inline Max(LL x, LL y)
    {
        if (x < y)
            return y;
        else
            return x;
    }
    
    void Input()
    {
        for (int i = 0; i < n; ++i)
        {
            scanf("%I64d", &s[i]);
            s[i] %= p;
        }
        sort(s, s+n);
    }
    
    int binarySearch(LL key)
    {
        int lt = 0, rt = n-1, mid;
        while (lt <= rt)
        {
            mid = (lt+rt) >> 1;
            if(key == s[mid])
                return mid;
            if(key < s[mid])
                rt = mid-1;
            if(key > s[mid])
                lt = mid+1;
        }
        return -1;
    }
    
    bool judge(LL k)
    {
        for (int i = 0; i < n; ++i)
        {
            if (k-s[i] >= 0 && binarySearch(k-s[i]) != -1)
                return true;
            if (k-s[i] <= 0 && binarySearch(k-s[i]+p) != -1)
                return true;
        }
        return false;
    }
    
    void Work()
    {
        LL maxs = s[n-2]+s[n-1];
        if (maxs < p)
        {
            printf("%I64d
    ", maxs);
            return;
        }
        LL lt = Max((s[0]+s[n-1])%p, (s[n-2]+s[n-1])%p), rt = p-1, mid;
        while (lt < rt)
        {
            mid = (lt+rt) >> 1;
            if (judge(mid))
                lt = mid;
            if (judge(rt))
            {
                printf("%I64d
    ", rt);
                return;
            }
            else
                rt--;
        }
        printf("%I64d
    ", lt);
    }
    
    int main()
    {
        //freopen("test.in", "r", stdin);
        while (scanf("%d%I64d", &n, &p) != EOF)
        {
            Input();
            Work();
        }
        return 0;
    }
    View Code


    正确代码:

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #define LL long long
    
    using namespace std;
    
    int n;
    LL p, a[100005];
    
    void Input()
    {
        for (int i = 0; i < n; ++i)
        {
            scanf("%I64d", &a[i]);
            a[i] %= p;
        }
        sort(a, a+n);
    }
    
    void Work()
    {
        LL maxs = a[n-1]+a[n-2];
        if (maxs < p)
        {
            printf("%I64d
    ", maxs);
            return;
        }
    
        maxs -= p;
        int lt = 0, rt = n-1;
        while (lt < rt)
        {
            while (a[lt]+a[rt] >= p && lt < rt)
                rt--;
            if (lt >= rt)
                break;
            maxs = max(maxs, a[lt]+a[rt]);
            lt++;
        }
        printf("%I64d
    ", maxs);
    }
    
    int main()
    {
        //freopen("test.in", "r", stdin);
        while (scanf("%d%I64d", &n, &p) != EOF)
        {
            Input();
            Work();
        }
        return 0;
    }
    View Code
  • 相关阅读:
    layui table中省略号展开,弹框拖动会错位问题
    layui table分页 page为false时,limit问题
    layui 表格在排序之后没有重新渲染问题
    基于jQuery的控件:弹框
    layui layer弹框中表格的显示
    layui select使用问题
    页面强制横屏
    linux下常用命令
    文字超出省略号显示
    Web Notification简单实现桌面消息通知(右下角提示)
  • 原文地址:https://www.cnblogs.com/andyqsmart/p/4564122.html
Copyright © 2011-2022 走看看