Description
Pog and Szh are playing games.There is a sequence with $n$ numbers, Pog will choose a number A from the sequence. Szh will choose an another number named B from the rest in the sequence. Then the score will be $(A+B)$ mod $p$.They hope to get the largest score.And what is the largest score?
Input
Several groups of data (no more than $5$ groups,$n geq 1000$).
For each case:
The following line contains two integers,$n(2 leq n leq 100000)$,$p(1 leq p leq 2^{31}-1)$。
The following line contains $n$ integers $a_i(0 leq a_i leq 2^{31}-1)$。
For each case:
The following line contains two integers,$n(2 leq n leq 100000)$,$p(1 leq p leq 2^{31}-1)$。
The following line contains $n$ integers $a_i(0 leq a_i leq 2^{31}-1)$。
Output
For each case,output an integer means the largest score.
Sample Input
4 4
1 2 3 0
4 4
0 0 2 2
Sample Output
3
2
首先对所有的数模p再排序是没有问题的。
然后就是怎么求模p的最大值。
首先如果a[n-2]+a[n-1]小于p,自然最大值就是它。
然而打BC的时候并没有考虑透彻,然后想对最大值进行枚举,看能不能凑到这个最大值,因为直接暴力枚举会T,然后想二分,但是貌似不能直接二分,于是我还是设了一个左值lt和右值rt,rt自然初始为p-1,而lt初始值可以取a[0]+a[n-1]和a[n-2]+a[n-1]里面较大的。然后就是如果mid值能凑到,自然更新lt为mid值,然后判断rt能否取到,否则自减,然而这样是过不了极限数据的。不过貌似OJ测试数据并没有,这样是可以过的。。。不过当时没考虑int爆掉,还有二分也写搓被Hack掉了。
然后就是正规做法了:
考虑到之前模过后进行的排序,所以任意两个数相加的和比p大的值要小于p,所以减一次就能比p小,所以最大值只有两种可能,x+y或x+y-p。
然后对于后者,最大自然是a[n-2]+a[n-1]-p(在得到它们和大于p的前提下),然后只用找x+y的最大了。
然后从小到大枚举每个x,y自然是从大到小排除,得到首个比p小的。
由于对于x+c来说,x+c+y > x+y,所以,如果之前x+y超过p的,x+c+y自然也超过p了。所以往后的y不需要返回继续减小即可。
暴力枚举代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #include <set> #include <map> #include <queue> #include <string> #define LL long long using namespace std; int n; LL s[100010], p; inline Max(LL x, LL y) { if (x < y) return y; else return x; } void Input() { for (int i = 0; i < n; ++i) { scanf("%I64d", &s[i]); s[i] %= p; } sort(s, s+n); } int binarySearch(LL key) { int lt = 0, rt = n-1, mid; while (lt <= rt) { mid = (lt+rt) >> 1; if(key == s[mid]) return mid; if(key < s[mid]) rt = mid-1; if(key > s[mid]) lt = mid+1; } return -1; } bool judge(LL k) { for (int i = 0; i < n; ++i) { if (k-s[i] >= 0 && binarySearch(k-s[i]) != -1) return true; if (k-s[i] <= 0 && binarySearch(k-s[i]+p) != -1) return true; } return false; } void Work() { LL maxs = s[n-2]+s[n-1]; if (maxs < p) { printf("%I64d ", maxs); return; } LL lt = Max((s[0]+s[n-1])%p, (s[n-2]+s[n-1])%p), rt = p-1, mid; while (lt < rt) { mid = (lt+rt) >> 1; if (judge(mid)) lt = mid; if (judge(rt)) { printf("%I64d ", rt); return; } else rt--; } printf("%I64d ", lt); } int main() { //freopen("test.in", "r", stdin); while (scanf("%d%I64d", &n, &p) != EOF) { Input(); Work(); } return 0; }
正确代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #define LL long long using namespace std; int n; LL p, a[100005]; void Input() { for (int i = 0; i < n; ++i) { scanf("%I64d", &a[i]); a[i] %= p; } sort(a, a+n); } void Work() { LL maxs = a[n-1]+a[n-2]; if (maxs < p) { printf("%I64d ", maxs); return; } maxs -= p; int lt = 0, rt = n-1; while (lt < rt) { while (a[lt]+a[rt] >= p && lt < rt) rt--; if (lt >= rt) break; maxs = max(maxs, a[lt]+a[rt]); lt++; } printf("%I64d ", maxs); } int main() { //freopen("test.in", "r", stdin); while (scanf("%d%I64d", &n, &p) != EOF) { Input(); Work(); } return 0; }