zoukankan      html  css  js  c++  java
  • 面试- 阿里-. 大数据题目- 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

    假如每个url大小为10bytes,那么可以估计每个文件的大小为50G×64=320G,远远大于内存限制的4G,所以不可能将其完全加载到内存中处理,可以采用分治的思想来解决。

      Step1:遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,...,a999,每个小文件约300M);

      Step2:遍历文件b,采取和a相同的方式将url分别存储到1000个小文件(记为b0,b1,...,b999);

      巧妙之处:这样处理后,所有可能相同的url都被保存在对应的小文件(a0vsb0,a1vsb1,...,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出这个1000对小文件中相同的url即可。

      Step3:求每对小文件ai和bi中相同的url时,可以把ai的url存储到hash_set/hash_map中。然后遍历bi的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

      草图如下(左边分解A,右边分解B,中间求解相同url):

    2.有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M,要求返回频数最高的100个词。

      Step1:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为f0,f1,...,f4999)中,这样每个文件大概是200k左右,如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M;

      Step2:对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件,这样又得到了5000个文件;

      Step3:把这5000个文件进行归并(类似与归并排序);

      草图如下(分割大问题,求解小问题,归并):

     草图如下(分割大问题,求解小问题,归并):

    3.现有海量日志数据保存在一个超级大的文件中,该文件无法直接读入内存,要求从中提取某天出访问百度次数最多的那个IP。

      Step1:从这一天的日志数据中把访问百度的IP取出来,逐个写入到一个大文件中;

      Step2:注意到IP是32位的,最多有2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件;

      Step3:找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率;

      Step4:在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

      草图如下:

  • 相关阅读:
    留言板!
    NX二次开发-OLE/COM向EXCEL表格中插入图片
    NX二次开发-UFUN读取图纸尺寸的值UF_DRF_ask_dimension_text
    NX二次开发-UFUN修剪体UF_MODL_trim_body
    NX二次开发-UFUN相加布尔操作,可保留或删除目标体,工具体UF_MODL_unite_bodies_with_retained_options
    C++之判断字符串是否是数字
    CommandLineToArgvW调EXE传入参数【转载】
    NX二次开发-用户自定义资源栏选项卡RegisterActivationCallback
    NX二次开发-自定义添加右键菜单RegisterConfigureContextMenuCallback
    NX二次开发-调系统命令UF_load_library[UFUN调DLL]
  • 原文地址:https://www.cnblogs.com/aspirant/p/7154551.html
Copyright © 2011-2022 走看看