zoukankan      html  css  js  c++  java
  • 【原创】大叔问题定位分享(10)提交spark任务偶尔报错 org.apache.spark.SparkException: A master URL must be set in your configuration

    spark 2.1.1

    一 问题重现

    问题代码示例

    object MethodPositionTest {
    
     
    
      val sparkConf = new SparkConf().setAppName("MethodPositionTest")
    
      val sc = new SparkContext(sparkConf)
    
      val spark = SparkSession.builder().enableHiveSupport().getOrCreate()
    
     
    
      def main(args : Array[String]) : Unit = {
    
        val cnt = spark.sql("select * from test_table").rdd.map(item => mapFun(item.getString(0))).count
    
        println(cnt)
    
      }
    
      def mapFun(str : String) : String = "p:" + str
    
    }

    当如下3行代码放到main外时

        val sparkConf = new SparkConf().setAppName(getName)

        val sc = new SparkContext(sparkConf)

        val spark = SparkSession.builder().enableHiveSupport().getOrCreate()

    有一定几率报错:

    Caused by: java.lang.ExceptionInInitializerError

        at app.package.AppClass$$anonfun$1.apply(AppClass.scala:208)

        at org.apache.spark.sql.execution.MapElementsExec$$anonfun$8$$anonfun$apply$1.apply(objects.scala:237)

        at org.apache.spark.sql.execution.MapElementsExec$$anonfun$8$$anonfun$apply$1.apply(objects.scala:237)

        at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)

        at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)

        at scala.collection.Iterator$class.foreach(Iterator.scala:893)

        at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)

        at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)

        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)

        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)

        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)

        at scala.collection.AbstractIterator.to(Iterator.scala:1336)

        at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)

        at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)

        at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)

        at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)

        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)

        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)

        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)

        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)

        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)

        at org.apache.spark.scheduler.Task.run(Task.scala:99)

        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)

        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)

        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)

        at java.lang.Thread.run(Thread.java:745)

    Caused by: org.apache.spark.SparkException: A master URL must be set in your configuration

        at org.apache.spark.SparkContext.<init>(SparkContext.scala:379)

        at app.package.AppClass$.<clinit>(AppClass.scala)

    二 问题解析

    MethodPositionTest 定义了一个匿名函数anonfun,这个匿名函数在RDD.map中调用,即在Executor中执行,匿名函数中又依赖mapFun方法,触发类的初始化:MethodPositionTest$.<clinit>,初始化时会执行main外的spark初始化代码,即在Executor中创建SparkConf和SparkContext,这是不应该发生的,一个spark应用中只能有一个SparkContext并且应该在Driver端而不是Executor,而且发生之后会导致错误,代码如下:

    org.apache.spark.SparkContext

      try {
    
        _conf = config.clone()
    
        _conf.validateSettings()
    
     
    
        if (!_conf.contains("spark.master")) {
    
          throw new SparkException("A master URL must be set in your configuration")
    
     
    
        }

    问题1)为什么在Driver端不会报错找不到master,而在Executor端会报错

    Spark应用代码如下:

    val sparkConf = new SparkConf().setAppName(getName)

    这里SparkConf只设置了AppName,为什么在Driver端不会报错找不到master,而在Executor端会报错,这里需要看Spark Submit的执行过程,详见 https://www.cnblogs.com/barneywill/p/9820684.html

    Driver端执行时SparkSubmit会将各种参数包括命令行、配置文件、系统环境变量等,统一设置到系统环境变量

        for ((key, value) <- sysProps) {

          System.setProperty(key, value)

        }

    然后SparkConf会默认从系统环境变量中加载配置

        for ((key, value) <- Utils.getSystemProperties if key.startsWith("spark.")) {

          set(key, value, silent)

        }

    所以Driver端的SparkConf会包含所有的参数,但是Executor端则没有。

    问题2)当spark相关的初始化代码在main外时,为什么有时报错,有时不报错

    具体情形如下:
    1)如果main里边的transformation(示例中的map方法)不依赖外部函数调用,正常;
    2)如果main里边的transformation(示例中的map方法)依赖main里的函数,报错;
    3)如果main里边的transformation(示例中的map方法)依赖main外的函数,报错;

    这里可以通过反编译代码来看原因,示例MethodPositionTest的反编译代码如下:

    public final class MethodPositionTest$
    
    {
    
     
    
             public static final MethodPositionTest$ MODULE$ = this;
    
             private final SparkConf sparkConf = (new SparkConf()).setAppName("MethodPositionTest");
    
             private final SparkContext sc = new SparkContext(sparkConf());
    
             private final SparkSession spark;
    
     
    
             public SparkConf sparkConf()
    
             {
    
                      return sparkConf;
    
             }
    
     
    
             public SparkContext sc()
    
             {
    
                      return sc;
    
             }
    
     
    
             public SparkSession spark()
    
             {
    
                      return spark;
    
             }
    
     
    
             public String mapFun(String str)
    
             {
    
                      return (new StringBuilder()).append("p:").append(str).toString();
    
             }
    
     
    
             public void main(String args[])
    
             {
    
                      long cnt = spark().sql("select * from test_table").rdd().map(new Serializable() {
    
     
    
                              public static final long serialVersionUID = 0L;
    
     
    
                              public final String apply(Row item)
    
                              {
    
                                       return MethodPositionTest$.MODULE$.mapFun(item.getString(0));
    
                              }
    
     
    
                              public final volatile Object apply(Object v1)
    
                              {
    
                                       return apply((Row)v1);
    
                              }
    
     
    
                      }, ClassTag$.MODULE$.apply(java/lang/String)).count();
    
                      Predef$.MODULE$.println(BoxesRunTime.boxToLong(cnt));
    
             }
    
     
    
             private MethodPositionTest$()
    
             {
    
                      spark = SparkSession$.MODULE$.builder().enableHiveSupport().getOrCreate();
    
             }
    
     
    
             static
    
             {
    
                      new MethodPositionTest$();
    
             }
    
    }

    可见这里的匿名内部类依赖类MethodPositionTest$的方法mapFun,所以会触发类MethodPositionTest$的加载以及静态代码块执行,触发报错;

    综上,不建议将spark的初始化代码放到main外,很容易出问题。

  • 相关阅读:
    5.18英语
    5.18
    5.17
    单源点最短路模板
    5.16
    mock.js进行接口mock
    docker-compose安装和使用
    docker常用命令
    docker安装和使用(win10家庭版)
    ES6基础(2)-const
  • 原文地址:https://www.cnblogs.com/barneywill/p/10109122.html
Copyright © 2011-2022 走看看