1069: [SCOI2007]最大土地面积
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 2978 Solved: 1173
[Submit][Status][Discuss]
Description
在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成
的多边形面积最大。
Input
第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。
Output
最大的多边形面积,答案精确到小数点后3位。
Sample Input
5
0 0
1 0
1 1
0 1
0.5 0.5
0 0
1 0
1 1
0 1
0.5 0.5
Sample Output
1.000
HINT
数据范围 n<=2000, |x|,|y|<=100000
4边形呵呵
枚举对角线,就是两个三角形啊....并且还是两个点确定的...卡就行了
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <vector> using namespace std; typedef long long ll; const int N=2005; const double eps=1e-8; inline int sgn(double x){ if(abs(x)<eps) return 0; else return x<0?-1:1; } struct Vector{ double x,y; Vector(double a=0,double b=0):x(a),y(b){} bool operator <(const Vector &a)const{ return sgn(x-a.x)<0||(sgn(x-a.x)==0&&sgn(y-a.y)<0); } }; typedef Vector Point; Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);} Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);} Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);} Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);} bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==0&&sgn(a.y-b.y)==0;} double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;} double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;} double Len(Vector a){return sqrt(Dot(a,a));} double Len2(Vector a){return Dot(a,a);} double DisTL(Point p,Point a,Point b){ Vector v1=p-a,v2=b-a; return abs(Cross(v1,v2)/Len(v2)); } int ConvexHull(Point p[],int n,Point ch[]){ sort(p+1,p+1+n); int m=0; for(int i=1;i<=n;i++){ while(m>1&&sgn(Cross(ch[m]-ch[m-1],p[i]-ch[m-1]))<=0) m--; ch[++m]=p[i]; } int k=m; for(int i=n-1;i>=1;i--){ while(m>k&&sgn(Cross(ch[m]-ch[m-1],p[i]-ch[m-1]))<=0) m--; ch[++m]=p[i]; } if(n>1) m--; return m; } double S(Vector a,Vector b){return abs(Cross(a,b));} double RotatingCalipers(Point p[],int n){ if(n<3) return 0; if(n==4) return abs(Cross(p[3]-p[1],p[2]-p[1]))/2+abs(Cross(p[3]-p[1],p[4]-p[1]))/2; double ans=0; p[n+1]=p[1]; for(int i=1;i<=n-2;i++){ int k=i+1,l=(i+2)%n+1; for(int j=i+2;j<=n;j++){ while(k+1<j&&sgn(S(p[k]-p[i],p[j]-p[i])-S(p[k+1]-p[i],p[j]-p[i]))<0) k=k+1; while(l%n+1!=i&&sgn(S(p[l]-p[i],p[j]-p[i])-S(p[l%n+1]-p[i],p[j]-p[i]))<0) l=l%n+1; ans=max(ans,S(p[k]-p[i],p[j]-p[i])/2+S(p[l]-p[i],p[j]-p[i])/2); } } return ans; } int n; Point p[N],ch[N]; int main(int argc, const char * argv[]) { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); n=ConvexHull(p,n,ch); double ans=RotatingCalipers(ch,n); printf("%.3f",ans); }