zoukankan      html  css  js  c++  java
  • SPOJ11469 SUBSET

    题面

    Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000).

    FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn.

    Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the

    barn have the exact same total milk output as the cows on the right side of the barn!

    Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output.

    Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced.

    Please help him compute this quantity.

    有多少个非空子集,能划分成和相等的两份。

    题解

    我在考场上打的是暴力(3^n)我不会告诉你我CE了

    我们可以(3^{n/2})枚举两边的子集,然后(meeting;in;the;middle)即可

    代码

    #include<cstdio>
    #include<map>
    #include<vector>
    #define RG register
    #define clear(x, y) memset(x, y, sizeof(x));
    
    inline int read()
    {
    	int data = 0, w = 1;
    	char ch = getchar();
    	while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    	if(ch == '-') w = -1, ch = getchar();
    	while(ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
    	return data*w;
    }
    
    const int maxn(21);
    int n, a[maxn], ok[1 << maxn], cnt, ans;
    
    typedef std::vector<int>::iterator iter;
    std::map<int, int> map;
    std::vector<int> set[1 << maxn];
    
    void dfs(int x, int s, int d)
    {
    	if(x > (n >> 1) - 1)
    	{
    		if(map.find(d) == map.end()) map[d] = ++cnt;
    		int t = map[d]; set[t].push_back(s); return;
    	}
    
    	dfs(x + 1, s, d);
    	dfs(x + 1, s | (1 << x), d + a[x]);
    	dfs(x + 1, s | (1 << x), d - a[x]);
    }
    
    void Dfs(int x, int s, int d)
    {
    	if(x > n - 1)
    	{
    		if(map.find(d) == map.end()) return;
    		int t = map[d];
    		for(RG iter it = set[t].begin(); it != set[t].end(); ++it) ok[(*it) | s] = 1;
    		return;
    	}
    
    	Dfs(x + 1, s, d);
    	Dfs(x + 1, s | (1 << x), d + a[x]);
    	Dfs(x + 1, s | (1 << x), d - a[x]);
    }
    
    int main()
    {
    	n = read();
    	for(RG int i = 0; i < n; i++) a[i] = read();
    	dfs(0, 0, 0); Dfs((n >> 1), 0, 0);
    	for(RG int i = (1 << n) - 1; i; i--) ans += ok[i];
    	printf("%d
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    CSAPP阅读笔记-struct, union, 数据对齐-来自第三章3.9的笔记-P183-P191
    CSAPP阅读笔记-数组分配与访问-来自第三章3.8的笔记-P176-P183
    深入理解静态方法和实例化方法的区别
    通俗讲解静态方法和实例方法的区别
    ArcGis中的类模型图目录
    C++ Primer(第四版) 课后习题6.8 统计空格制表符换行的数目
    C++ Primer(第四版) 课后习题4.30
    string类sizeof大小
    C++ Primer(第四版) 课后习题4.18
    C++ Primer(第四版) 课后习题3.14 vector单词转大写
  • 原文地址:https://www.cnblogs.com/cj-xxz/p/9798648.html
Copyright © 2011-2022 走看看