zoukankan      html  css  js  c++  java
  • 用MR实现Join逻辑的两种方法

    date: 2017-09-18 12:59

    需求

    订单数据表 order.txt

    id date pid amount
    1001 20150710 P0001 2
    1002 20150710 P0001 3
    1002 20150710 P0001 3

    商品信息表 product.txt

    id pname category_id price
    P0001 小米5 1001 2
    P0002 锤子T1 1000 3
    P0003 锤子 1002 3

    假如数据量巨大,两表的数据是以文件的形式存储在HDFS中,需要用mapreduce程序来实现一下SQL查询运算:

    select  a.id,a.date,b.name,b.category_id,b.price from t_order a join t_product b on a.pid = b.id
    

    reduce端join算法实现

    实现机制:

    通过将关联的条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reduce task,在reduce中进行数据的串联

    RJoin.java

    public class RJoin {
    	
    	static class RJoinMapper extends Mapper<LongWritable, Text, Text, InfoBean> {
    		InfoBean bean = new InfoBean();
    		Text k = new Text();
    		
    		@Override
    		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
    			String line = value.toString();
    			String[] fields = line.split("	");
    			String pid = "";
    			
    			// 通过文件名判断是哪种数据
    			FileSplit inputSplit = (FileSplit) context.getInputSplit();
    			String name = inputSplit.getPath().getName();
    			if (name.startsWith("order")) {
    				pid = fields[2];
    				bean.set(fields[0], fields[1], pid, Integer.parseInt(fields[3]), "", "", -1, "0");
    			} else {
    				pid = fields[0];
    				bean.set("", "", pid, -1, fields[1], fields[2], Float.parseFloat(fields[3]), "1");
    			}
    			k.set(pid);
    			context.write(k, bean);
    		}
    	}
    	
    	
    	static class RJoinReducer extends Reducer<Text, InfoBean, InfoBean, NullWritable> {
    		@Override
    		protected void reduce(Text pid, Iterable<InfoBean> values, Context context) throws IOException, InterruptedException {
    			InfoBean pdBean = new InfoBean();
    			List<InfoBean> orderBeans = new ArrayList<InfoBean>();
    			
    			for (InfoBean bean : values) {
    				if ("1".equals(bean.getFlag())) { //产品
    					try {
    						BeanUtils.copyProperties(pdBean, bean);
    					} catch (IllegalAccessException | InvocationTargetException e) {
    						e.printStackTrace();
    					}
    				} else {
    					InfoBean orderBean = new InfoBean();
    					try {
    						BeanUtils.copyProperties(orderBean, bean);
    						orderBeans.add(orderBean);
    					} catch (IllegalAccessException | InvocationTargetException e) {
    						e.printStackTrace();
    					}
    				}
    			}
    			
    			// 拼接两类数据形成最终结果
    			for (InfoBean bean : orderBeans) {
    				bean.setPname(pdBean.getPname());
    				bean.setCategory_id(pdBean.getCategory_id());
    				bean.setPrice(pdBean.getPrice());
    				
    				context.write(bean, NullWritable.get());
    			}
    		}
    	}
    	
    	public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
    		Configuration conf = new Configuration();
    		Job job = Job.getInstance(conf);
    
    		// 指定本程序的jar包所在的本地路径
    		job.setJarByClass(RJoin.class);
    		
    		//System.setProperty("hadoop.home.dir", "D:\hadoop-2.6.5");
    
    		// 指定本业务job要使用的mapper/Reducer业务类
    		job.setMapperClass(RJoinMapper.class);
    		job.setReducerClass(RJoinReducer.class);
    
    		// 指定mapper输出数据的kv类型
    		job.setMapOutputKeyClass(Text.class);
    		job.setMapOutputValueClass(InfoBean.class);
    
    		job.setOutputKeyClass(InfoBean.class);
    		job.setOutputValueClass(NullWritable.class);
    
    		FileInputFormat.setInputPaths(job, new Path(args[0]));
    		FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
    		boolean res = job.waitForCompletion(true);
    		System.exit(res ? 0 : 1);
    	}
    	
    }
    

    缺点

    这种方式中,join的操作是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜

    map端join算法实现

    原理阐述

    适用于关联表中有小表的情形;
    可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行join并输出最终结果,可以大大提高join操作的并发度,加快处理速度

    实现示例

    --先在mapper类中预先定义好小表,进行join
    --引入实际场景中的解决方案:一次加载数据库或者用distributedcache
    MapSideJoin.java

    public class MapSideJoin {
    	
    	static class MapSideJoinMapper extends Mapper<LongWritable, Text, InfoBean, NullWritable> {
    		Map<String, InfoBean> pdInfoMap = new HashMap<String, InfoBean>();
    		
    		InfoBean bean = new InfoBean();
    		
    		/**
    		 * 通过阅读父类Mapper的源码,发现 setup方法是在maptask处理数据之前调用一次 可以用来做一些初始化工作
    		 */
    		@Override
    		protected void setup(Context context) throws IOException, InterruptedException {
    			BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream("product.txt")));
    			String line;
    			
    			while (StringUtils.isNotEmpty(line = br.readLine())) {
    				InfoBean pdBean = new InfoBean();
    				String[] fields = line.split("	");
    				pdBean.set("", "", fields[0], -1, fields[1], fields[2], Float.parseFloat(fields[3]), "1");
    				pdInfoMap.put(fields[0], pdBean);
    			}
    			br.close();
    		}
    		
    		// 由于已经持有完整的产品信息表,所以在map方法中就能实现join逻辑了
    		@Override
    		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
    			String line = value.toString();
    			String[] fields = line.split("	");
    			String pid = fields[2];
    			//InfoBean productBean = pdInfoMap.get(pid);
    			bean.setOrder_id(fields[0]);
    			bean.setDate(fields[1]);
    			bean.setPid(pid);
    			bean.setAmount(Integer.parseInt(fields[3]));
    			bean.setPname(pdInfoMap.get(pid).getPname());
    			bean.setCategory_id(pdInfoMap.get(pid).getCategory_id());
    			bean.setPrice(pdInfoMap.get(pid).getPrice());
    			context.write(bean, NullWritable.get());
    		}
    	}
    	
    	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
    		Configuration conf = new Configuration();
    		Job job = Job.getInstance(conf);
    
    		// 指定本程序的jar包所在的本地路径
    		job.setJarByClass(RJoin.class);
    
    		//System.setProperty("hadoop.home.dir", "D:\hadoop-2.6.5");
    
    		// 指定本业务job要使用的mapper/Reducer业务类
    		job.setMapperClass(MapSideJoinMapper.class);
    
    		// 指定mapper输出数据的kv类型
    		job.setMapOutputKeyClass(InfoBean.class);
    		job.setMapOutputValueClass(NullWritable.class);
    
    		FileInputFormat.setInputPaths(job, new Path(args[0]));
    		FileOutputFormat.setOutputPath(job, new Path(args[1]));
    		//FileInputFormat.setInputPaths(job, new Path("hdfs://mini1/mapsidejoin/input"));
    		//FileOutputFormat.setOutputPath(job, new Path("hdfs://mini1/mapsidejoin/output"));
    
    		// 指定需要缓存一个文件到所有的maptask运行节点工作目录
    		/* job.addArchiveToClassPath(archive); */// 缓存jar包到task运行节点的classpath中
    		/* job.addFileToClassPath(file); */// 缓存普通文件到task运行节点的classpath中
    		/* job.addCacheArchive(uri); */// 缓存压缩包文件到task运行节点的工作目录
    		/* job.addCacheFile(uri) */// 缓存普通文件到task运行节点的工作目录
    
    		// 将产品表文件缓存到task工作节点的工作目录中去
    		job.addCacheFile(new URI("hdfs://mini1/mapsidejoin/cache/product.txt"));
    
    		// map端join的逻辑不需要reduce阶段,设置reducetask数量为0
    		job.setNumReduceTasks(0);
    
    		boolean res = job.waitForCompletion(true);
    		System.exit(res ? 0 : 1);
    	}
    	
    }
    

    InfoBean.java

    public class InfoBean implements Writable {
    	private String order_id;
    	private String date;
    	private String pid;
    	private int amount;
    	private String pname;
    	private String category_id;
    	private float price;
    	// flag=0表示这个对象是封装订单表记录
    	// flag=1表示这个对象是封装产品信息记录
    	private String flag;
    	
    	public void set(String order_id, String date, String pid, int amount, String pname,
    			String category_id, float price, String flag) {
    		this.order_id = order_id;
    		this.date = date;
    		this.pid = pid;
    		this.amount = amount;
    		this.pname = pname;
    		this.category_id = category_id;
    		this.price = price;
    		this.flag = flag;
    	}
    
    	public String getOrder_id() {
    		return order_id;
    	}
    
    	public void setOrder_id(String order_id) {
    		this.order_id = order_id;
    	}
    
    	public String getDate() {
    		return date;
    	}
    
    	public void setDate(String date) {
    		this.date = date;
    	}
    
    	public String getPid() {
    		return pid;
    	}
    
    	public void setPid(String pid) {
    		this.pid = pid;
    	}
    
    	public int getAmount() {
    		return amount;
    	}
    
    	public void setAmount(int amount) {
    		this.amount = amount;
    	}
    
    	public String getPname() {
    		return pname;
    	}
    
    	public void setPname(String pname) {
    		this.pname = pname;
    	}
    
    	public String getCategory_id() {
    		return category_id;
    	}
    
    	public void setCategory_id(String category_id) {
    		this.category_id = category_id;
    	}
    
    	public float getPrice() {
    		return price;
    	}
    
    	public void setPrice(float price) {
    		this.price = price;
    	}
    
    	public String getFlag() {
    		return flag;
    	}
    
    	public void setFlag(String flag) {
    		this.flag = flag;
    	}
    
    	@Override
    	public void readFields(DataInput in) throws IOException {
    		this.order_id = in.readUTF();
    		this.date = in.readUTF();
    		this.pid = in.readUTF();
    		this.amount = in.readInt();
    		this.pname = in.readUTF();
    		this.category_id = in.readUTF();
    		this.price = in.readFloat();
    		this.flag = in.readUTF();
    	}
    
    	@Override
    	public void write(DataOutput out) throws IOException {		
    		out.writeUTF(order_id);
    		out.writeUTF(date);
    		out.writeUTF(pid);
    		out.writeInt(amount);
    		out.writeUTF(pname);
    		out.writeUTF(category_id);
    		out.writeFloat(price);
    		out.writeUTF(flag);
    	}
    
    	@Override
    	public String toString() {
    		return "order_id=" + order_id + ", date=" + date + ", pid=" + pid + ", amount=" + amount + ", pname="
    				+ pname + ", category_id=" + category_id + ", price=" + price;
    	}
    
    	
    }
    

    结果

    part-r-00000

  • 相关阅读:
    Go语言环境配置 Sublime Text + GoSublime+ gocode + MarGo组合
    Java中string拼接,StringBuilder,StringBuffer和+
    java调优随记-java对象大小
    java调优随记-堆和栈
    java中一直说一个汉字使用两个字节,原来是不准确的
    kv存储对抗关系型数据库
    记一篇
    变态的静态资源缓存与更新
    git add shh public key
    hashmap 的最优访问
  • 原文地址:https://www.cnblogs.com/cloudflow/p/13894199.html
Copyright © 2011-2022 走看看