Key Set
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1856 Accepted Submission(s): 972
Problem Description
soda has a set S with n integers {1,2,…,n}.
A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are
key set.
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤105),
indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤109), the number of integers in the set.
The first line contains an integer n (1≤n≤109), the number of integers in the set.
Output
For each test case, output the number of key sets modulo 1000000007.
Sample Input
4
1
2
3
4
Sample Output
0
1
3
7
Author
zimpha@zju
Source
Recommend
对于一个含有n个元素的非空集合,他的非空子集有2^n-1个。因为题目中的集合里的元素是从1~n的,所以和为奇数的子集个数比和为偶数的子集多一个,也就是2^(n-1)-1个。
#include <stdio.h> __int64 pow(__int64 x, __int64 y) { __int64 res = 1; __int64 base = x; y -= 1; while (y) { if (y&1) res = base*res%1000000007; base = base*base%1000000007; y >>= 1; } return res; } int main() { int t; __int64 n; scanf("%d", &t); while (t--) { scanf("%I64d", &n); printf("%I64d ", pow(2, n) - 1); } return 0; }