zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 2 Friends

    Friends

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 0    Accepted Submission(s): 0


    Problem Description
    There are n people and m pairs of friends. For every pair of friends, they can choose to become online friends (communicating using online applications) or offline friends (mostly using face-to-face communication). However, everyone in these n people wants to have the same number of online and offline friends (i.e. If one person has x onine friends, he or she must have x offline friends too, but different people can have different number of online or offline friends). Please determine how many ways there are to satisfy their requirements.
     
    Input
    The first line of the input is a single integer T (T=100), indicating the number of testcases.

    For each testcase, the first line contains two integers n (1n8) and m (0mn(n1)2), indicating the number of people and the number of pairs of friends, respectively. Each of the next m lines contains two numbers x and y, which mean x and y are friends. It is guaranteed that xy and every friend relationship will appear at most once.
     
    Output
    For each testcase, print one number indicating the answer.
     
    Sample Input
    2
    3 3
    1 2
    2 3
    3 1
    4 4
    1 2
    2 3
    3 4
    4 1
     
    Sample Output
    0
    2
     
    解题:直接枚举边很草啊。。。貌似别人都是枚举点,每个点的最后一条边可以推算出来。。。而哥直接艹了。。。
     
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cmath>
     4 using namespace std;
     5 const int maxn = 50;
     6 struct arc {
     7     int u,v;
     8 } e[maxn];
     9 int st[maxn],du[maxn],n,m,ret;
    10 bool check() {
    11     for(int i = 1; i <= n; ++i)
    12         if(st[i]) return false;
    13     return true;
    14 }
    15 bool check2(int x){
    16     if(st[x] == 0 && (du[x]&1) == 0) return true;
    17     int tmp = st[x]<0?du[x]+st[x]:du[x]-st[x];
    18     if(st[x] < 0 && tmp >= 0 && (tmp&1) == 0) return true;
    19     if(st[x] > 0 && tmp >= 0 && (tmp&1) == 0) return true;
    20     return false;
    21 }
    22 void dfs(int cur) {
    23     if(cur == m) {
    24         if(check()) ++ret;
    25         return;
    26     }
    27     ++st[e[cur].u];
    28     ++st[e[cur].v];
    29     --du[e[cur].u];
    30     --du[e[cur].v];
    31     if(check2(e[cur].u) && check2(e[cur].v)) dfs(cur+1);
    32     st[e[cur].v] -= 2;
    33     st[e[cur].u] -= 2;
    34     if(check2(e[cur].u && check2(e[cur].v))) dfs(cur+1);
    35     ++st[e[cur].v];
    36     ++st[e[cur].u];
    37     ++du[e[cur].u];
    38     ++du[e[cur].v];
    39 }
    40 int main() {
    41     int kase;
    42     scanf("%d",&kase);
    43     while(kase--) {
    44         scanf("%d%d",&n,&m);
    45         memset(du,0,sizeof du);
    46         memset(st,0,sizeof st);
    47         for(int i = ret = 0; i < m; ++i) {
    48             scanf("%d%d",&e[i].u,&e[i].v);
    49             ++du[e[i].u];
    50             ++du[e[i].v];
    51         }
    52         bool flag = true;
    53         for(int i = 1; i <= n && flag; ++i)
    54             if(du[i]&1) flag = false;
    55         if(flag) dfs(0);
    56         printf("%d
    ",ret);
    57     }
    58     return 0;
    59 }
    View Code
  • 相关阅读:
    VS安装部署
    C#与C/C++的交互
    3、C#入门第3课
    登录接口,猜年龄
    安装sql server 2016 always on配置dtc支持时遇到的问题
    购物车第一版
    Oracle patch查看路径
    innobackup增量备份脚本
    在vmware workstation下安装linux6关闭防火墙
    线程池-连接池-JDBC实例-JDBC连接池技术
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4671863.html
Copyright © 2011-2022 走看看