zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 2 Friends

    Friends

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 0    Accepted Submission(s): 0


    Problem Description
    There are n people and m pairs of friends. For every pair of friends, they can choose to become online friends (communicating using online applications) or offline friends (mostly using face-to-face communication). However, everyone in these n people wants to have the same number of online and offline friends (i.e. If one person has x onine friends, he or she must have x offline friends too, but different people can have different number of online or offline friends). Please determine how many ways there are to satisfy their requirements.
     
    Input
    The first line of the input is a single integer T (T=100), indicating the number of testcases.

    For each testcase, the first line contains two integers n (1n8) and m (0mn(n1)2), indicating the number of people and the number of pairs of friends, respectively. Each of the next m lines contains two numbers x and y, which mean x and y are friends. It is guaranteed that xy and every friend relationship will appear at most once.
     
    Output
    For each testcase, print one number indicating the answer.
     
    Sample Input
    2
    3 3
    1 2
    2 3
    3 1
    4 4
    1 2
    2 3
    3 4
    4 1
     
    Sample Output
    0
    2
     
    解题:直接枚举边很草啊。。。貌似别人都是枚举点,每个点的最后一条边可以推算出来。。。而哥直接艹了。。。
     
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cmath>
     4 using namespace std;
     5 const int maxn = 50;
     6 struct arc {
     7     int u,v;
     8 } e[maxn];
     9 int st[maxn],du[maxn],n,m,ret;
    10 bool check() {
    11     for(int i = 1; i <= n; ++i)
    12         if(st[i]) return false;
    13     return true;
    14 }
    15 bool check2(int x){
    16     if(st[x] == 0 && (du[x]&1) == 0) return true;
    17     int tmp = st[x]<0?du[x]+st[x]:du[x]-st[x];
    18     if(st[x] < 0 && tmp >= 0 && (tmp&1) == 0) return true;
    19     if(st[x] > 0 && tmp >= 0 && (tmp&1) == 0) return true;
    20     return false;
    21 }
    22 void dfs(int cur) {
    23     if(cur == m) {
    24         if(check()) ++ret;
    25         return;
    26     }
    27     ++st[e[cur].u];
    28     ++st[e[cur].v];
    29     --du[e[cur].u];
    30     --du[e[cur].v];
    31     if(check2(e[cur].u) && check2(e[cur].v)) dfs(cur+1);
    32     st[e[cur].v] -= 2;
    33     st[e[cur].u] -= 2;
    34     if(check2(e[cur].u && check2(e[cur].v))) dfs(cur+1);
    35     ++st[e[cur].v];
    36     ++st[e[cur].u];
    37     ++du[e[cur].u];
    38     ++du[e[cur].v];
    39 }
    40 int main() {
    41     int kase;
    42     scanf("%d",&kase);
    43     while(kase--) {
    44         scanf("%d%d",&n,&m);
    45         memset(du,0,sizeof du);
    46         memset(st,0,sizeof st);
    47         for(int i = ret = 0; i < m; ++i) {
    48             scanf("%d%d",&e[i].u,&e[i].v);
    49             ++du[e[i].u];
    50             ++du[e[i].v];
    51         }
    52         bool flag = true;
    53         for(int i = 1; i <= n && flag; ++i)
    54             if(du[i]&1) flag = false;
    55         if(flag) dfs(0);
    56         printf("%d
    ",ret);
    57     }
    58     return 0;
    59 }
    View Code
  • 相关阅读:
    PHP常用字符串函数
    PHP 中解析 url 并得到 url 参数
    PHP中的10个实用函数
    虚拟主机知识全解
    php三种常用的加密解密算法
    Javascript中的位运算符和技巧
    ECMAScript 5中新增的数组方法
    捕捉小括号获取的内容保存在RegExp的$1 $2..属性中
    js获取浏览器窗口的大小
    关于switch的思考和总结
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4671863.html
Copyright © 2011-2022 走看看