zoukankan      html  css  js  c++  java
  • PAT 1013 Battle Over Cities(并查集)

    1013. Battle Over Cities (25)

    时间限制
    400 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

    For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city1 is occupied by the enemy, we must have 1 highway repaired, that is the highway city2-city3.

    Input

    Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

    Output

    For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

    Sample Input
    3 2 3
    1 2
    1 3
    1 2 3
    
    Sample Output
    1
    0
    0
    

    简单的并查集应用:

    #include <iostream>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <math.h>
    #include <stdio.h>
    #include <string>
    #include <vector>
    #include <strstream>
    #include <map>
    
    using namespace std;
    struct Node
    {
        int x;
        int y;
    }edge[1005*1005];
    int father[10005];
    int find(int x)
    {
        if(father[x]!=x) father[x]=find(father[x]);
        return father[x];
    }
    int n,m,k;
    int a;
    int main()
    {
        scanf("%d%d%d",&n,&m,&k);
        for(int i=1;i<=m;i++)
            scanf("%d%d",&edge[i].x,&edge[i].y);
    
        for(int i=1;i<=k;i++)
        {
            scanf("%d",&a);
            for(int j=1;j<=n;j++)
                father[j]=j;
            for(int j=1;j<=m;j++)
            {
                if(edge[j].x==a||edge[j].y==a)
                    continue;
                int fx=find(edge[j].x);
                int fy=find(edge[j].y);
                if(fx!=fy)
                    father[fx]=fy;
            }
            int ans=0;
            for(int j=1;j<=n;j++)
            {
                if(j==a) continue;
                find(j);
                if(father[j]==j)
                    ans++;
            }
            printf("%d
    ",ans-1);
        }
        return 0;
    
    }



  • 相关阅读:
    Go语言对etcd的基本操作
    etcd命令行基本操作
    etcd集群部署
    第二十一天python3 python的正则表达式re模块学习
    第二十天python3 正则表达式
    jenkins多分支构建选择
    第十九天python3 json和messagepack
    华为交换机设置ntp时间同步
    交换机端口光衰问题排查
    第十八天python3 序列化和反序列化
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228615.html
Copyright © 2011-2022 走看看