zoukankan      html  css  js  c++  java
  • KNN算法

    简单:

    一、手动写一个KNN算法解决分类问题

    from sklearn import datasets
    from collections import Counter  # 为了做投票
    from sklearn.model_selection import train_test_split
    import numpy as np
    
    # 导入iris数据
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=2003)
    
    
    def euc_dis(instance1, instance2):
    	"""
    	计算两个样本instance1和instance2之间的欧式距离
    	instance1: 第一个样本, array型
    	instance2: 第二个样本, array型
    	"""
    	# TODO
    	dist = np.sqrt(sum((instance1-instance2)**2))
    	return dist
        
        
    def knn_classify(X, y, testInstance, k):
        """
    	给定一个测试数据testInstance, 通过KNN算法来预测它的标签。 
    	X: 训练数据的特征
    	y: 训练数据的标签
    	testInstance: 测试数据,这里假定一个测试数据 array型
    	k: 选择多少个neighbors? 
    	"""
    	# TODO  返回testInstance的预测标签 = {0,1,2}
        distances = [euc_dis(x,testInstance) for x in X]
        kneighbors = np.argsort(distances)[:k]
        count = Counter(y[kneighbors])
        return count. most_common()[0][0]
    
    # 预测结果。    
    predictions = [knn_classify(X_train, y_train, data, 3) for data in X_test]
    correct = np.count_nonzero((predictions==y_test)==True)
    print ("Accuracy is: %.3f" %(correct/len(X_test)))
    

    二、K折交叉验证选择合适的的K值

    import numpy as np
    from sklearn import datasets
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model_selection import KFold  #主要用于k折交叉验证
    
    #导入iris数据集
    iris = datasets.load_iris()
    X = iris.data
    Y = iris.target
    print(X.shape,Y.shape)
    
    #定义我们想要使用的K值(候选集)
    ks = [1,3,5,7,9,11,13,15]
    
    '''
    进行5折交叉验证,KFlod返回的是每一折中训练数据和验证数据的index
    返回的kf格式为(前面的是训练集,后面的是验证集):
    [0,1,3,5,6,7,8,9],[2,4]
    [0,1,2,4,6,7,8,9],[3,5]
    [1,2,3,4,5,6,7,8],[0,9]
    [0,1,2,3,4,5,7,9],[6.8]
    [0,2,3,4,5,6,8,9],[1,7]
    '''
    kf = KFold(n_splits = 5,random_state=2001,shuffle=True)
    
    #保存当前最好的k值和对应的准确率值
    best_k = ks[0]
    best_score = 0
    
    #循环每一个k值
    for k in ks:
        curr_score = 0
        for train_index,valid_index in kf.split(X):
            # 每一折的训练以及计算准确率
            clf = KNeighborsClassifier(n_neighbors=k)
            clf.fit(X[train_index],Y[train_index])
            curr_score = curr_score + clf.score(X[valid_index],Y[valid_index])
        # 求一下5折的平均准确率
        avg_score = curr_score/5
        if avg_score > best_score:
            best_k = k
            best_score = avg_score
        print ("current best score is: %.2f"%best_score,"best k: %d"%best_k)
     
    print ("after cross validation, the final best k is: %d"%best_k)
    

    使用sklearn方法来实现:

    from sklearn.model_selection import GridSearchCV # 通过网格方式来搜索参数
    from sklearn import datasets
    from sklearn.neighbors import KNeighborsClassifier
    
    iris = datasets.load_iris()
    X = iris.data
    Y = iris.target
    
    # 设置需要搜索的k值,'n_neighbors'是sklearn中KNN的参数
    parameters = {'n_neighbors':[1,3,5,7,9,11,13,15]}
    knn = KNeighborsClassifier()
    
    #通过GridSearchCV来搜索最好的K值,这个模块的内部其实就是对于每一个k值做了评估
    clf = GridSearchCV(knn,parameters,cv=5)
    clf.fit(X,Y)
    
    #输出最好的参数以及对应的准确率
    print("best score is:%.2f"%clf.best_score_," best param: ",clf.best_params_)
    

      

      

  • 相关阅读:
    章程系统管理明天软考的童鞋进来顶起!!!
    线程任务java并发包小结(二)
    模板统计LA 4670 Dominating Patterns
    背包问题选中递归求解0 1背包问题
    转发forwardingiptables remote port forwarding
    函数用户PHP自学之路错误及异常处理机制、错误日志
    内存图片内存溢出和泄漏
    命令视频Matlab下查看摄像头设备信息
    JAVA数据格式化
    数字转大写(java)
  • 原文地址:https://www.cnblogs.com/darklights/p/11623447.html
Copyright © 2011-2022 走看看