zoukankan      html  css  js  c++  java
  • cuda Global Memory Access

    GLobal memory的load/store都要经过L2缓存(在计算能力 < 3的卡还有L1缓存),所以目前的主流卡基本上都已经没有L1缓存了,所以后面就只以L2缓存为例.

    对齐寻址和临近寻址:

      Global memory在与L2做数据传输的最小单位为32bytes,称为L2 cahce line size.  例如有一段64bytes的global memory,如果warp中的一个线程要访问第4个字节的数据,那么L2缓存会把前32个字节的global memory都缓存过来,这种策略称为space locality (空间局部性:当前使用的数据临近的数据被使用的可能性更高),同理如果访问第33个bytes的内存,那么L2缓存会把后32个bytes的数据都缓存过来,相当于将global memory从起始地址按照32bytes分段,每次都缓存若干段的数据,所以就存在一个global memory efficiency的指标表示global memory的Load和store效率.

      以一个warp的32个线程为例:假设有一段global memory,float* data,长度为160(5*32).假设线程id为tid的线程去访问data[tid]位置的数据,那么总计需要访问data的前128字节的内容,按照L2以32字节为单位的缓存方式,正好缓存4段地址,这就属于对齐访问。

      现在换一个访问方式:tid的线程去访问data[tid + offset]位置的内存,其中:0 < offset < 8.可以看到无论offset取多少,都将缓存全部5段内存,但是实际只用了4段,因此使用效率为80%,这种就属于没有对齐,所以对齐访问指的就是是否按照32字节访问global memory中的数据.

      而临近访问指的就是让一个warp中的线程访问的内存尽量挨着,这样就能降低数据缓存的总量.访问的内存总量如果很高,就算efficiency很高,速度肯定也慢.

    验证程序:

    #include<stdio.h>
    #include<time.h>
    typedef float TYPE;
    __global__ void readOffset(TYPE* A, TYPE* B, TYPE* C,
            int n, int offset) {
        int tid = blockIdx.x * blockDim.x + threadIdx.x;
        int i = tid + offset;
        if ( i < n ) C[tid] = A[i] + B[i];
    }
    
    __global__ void warmup(TYPE* A, TYPE* B, TYPE* C,
        int n, int offset) {
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    int i = tid + offset;
    if ( i < n ) C[tid] = A[i] + B[i];
    }
    
    void InitValue(TYPE* p, int n) {
        for (int i = 0; i != n - 1; i++) {
            p[i] = i;
        }
    }
    int main(int argc, char** argv) {
        int n = 1 << 20;
        size_t nBytes = n*sizeof(TYPE);
        int blockSize = 512;
        int offset = 0;
        if (argc > 1) offset = atoi(argv[1]);
        int nBlocks = (n-1)/blockSize + 1;
        TYPE* a = (TYPE*)malloc(nBytes);    
        TYPE* b = (TYPE*)malloc(nBytes);
        InitValue(a, n);
        InitValue(b, n);
        TYPE* A, *B, *C;
        cudaMalloc(&A, nBytes);    
        cudaMalloc(&B, nBytes);    
        cudaMalloc(&C, nBytes);
        cudaMemcpy(A, a, nBytes, cudaMemcpyHostToDevice);    
        cudaMemcpy(B, b, nBytes, cudaMemcpyHostToDevice);    
        //warmup    
        clock_t start, end;
        start = clock();
        warmup<<<nBlocks, blockSize>>>(A, B, C, n, offset);
        cudaDeviceSynchronize();
        end = clock();    
        double dura = (double)(end - start) / CLOCKS_PER_SEC;
        printf("warmup  : %f
    ", dura);
        
        start = clock();
        readOffset<<<nBlocks, blockSize>>>(A, B, C, n, offset);
        cudaDeviceSynchronize();
        end = clock();    
        dura = (double)(end - start) / CLOCKS_PER_SEC;
        printf("offset %d: %f
    ", offset, dura);
        cudaFree(A);
        cudaFree(B);
        cudaFree(C);
        free(a);
        free(b);
    
        cudaDeviceReset();
        return 0;    
    }

    编译:

    nvcc -O3 aliged.cu -o align

    分别取不同的offset运行程序:

    ./align
    ./align 4
    ./align 128

    结果如下:(在垃圾游戏本上可能要多运行几次才能出现这么好的结果,在较好的比较稳定的服务器上几乎每次都能得到类似的结果)

    warmup  : 0.000350
    offset 0: 0.000137

    warmup : 0.000350 offset 4: 0.000154

    warmup : 0.000346 offset 128: 0.000137

    使用nvprof进一步验证:

    nvprof ./align
    nvprof ./align 4
    nvprof ./align 128

    结果如下:

    可以看到不管是warmup还是readOffset函数,当offset不对齐的时候执行时间都比对其的情况慢.

    然后继续使用--metrics选项查看利用率,执行:

    nvprof --metrics gld_efficiency,gst_efficiency ./align 4

    结果如下:

    可以看到efficiency为80%,正好符合预期,如果offset换为8的倍数,那么efficiency就都是100%.

    另外简单修改代码就能实现gst_efficiency为80%,就是将readOffset中的C[tid]改为C[tid+offset],修改之后重新编译,同样执行上面的命令,结果如下:

    AoS VS SoA

    什么意思:Array of struct && struct of Array

    例如:

    case AoS:
    struct
    P { int x; int y; }; P* arr;
    cudaMalloc(&arr, 1024*sizeof(P));
    case SoA:
    struct P { int x[1024]; int y[1024]; };
    P* arr;
    cudaMalloc(&arr, sizeof(P));

    假设(x,y)代表点的坐标,假设实现两个kernel函数,分别给两个不同形式的arr赋相同的值,代码参考:http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-Programming.productCd-1118739329,descCd-DOWNLOAD.html->chapter04中的simpleMathAos.cu.

    理论上两种表示都能实现这个功能,但是对内存的efficiency是天差地别的.

    Aos与SoA的存储方式,如下图:

    经过上面的例子可以简单分析一下:当以AoS格式请求arr[tid].x时,arr[tid].y也被隐式加载,因此利用率只有50%,而SoA则没有这个问题.

    这里注意:gld_efficiency的计算公式为:

      其中Required为一个warp的线程一次请求需要的全部内存,而Requested为每次请求的使用显存大小,所以simpleMathAoS.cu的kernel每次都对x,y分别赋值,每次都只request了4字节的内存,因此最后结果是50%.

  • 相关阅读:
    vue慕课网音乐项目手记:9-封装一个公用的scroll组件
    vue慕课网音乐项目手记:50-搜索列表的点击删除、删除全部的交互事件
    vue慕课网音乐项目手记:48-搜索历史数据的处理
    vue慕课网音乐项目手记:6-手写滚动轮播图(中)
    vue慕课网音乐项目手记:5-手写滚动轮播图(上)
    vue慕课网音乐项目手记:30-音乐环形进度条的实现
    vue慕课网音乐项目手记:45-搜索页面跳转歌手页面
    基于Vue2.0的音乐播放器(2)——歌手模块
    linux学习笔记-(1)-安装
    linux学习笔记-前篇
  • 原文地址:https://www.cnblogs.com/deepllz/p/11541895.html
Copyright © 2011-2022 走看看