题意:给定一个数 n,求1-n之间有多少个包含13,并且是13的倍数的数。
析:数位DP,dp[i][j][k],表示前 i 位,模13余数为 j,k = 0,表示不含 13并且前一位不是1,k = 1,表示不含13但前一位是1,k = 2,
表示含13,那么剩下的就简单了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
int dp[15][15][3], a[15];
int dfs(int pos, int last, int val, bool ok){
if(!pos) return last == 0 && val == 2;
int &ans = dp[pos][last][val];
if(!ok && ans >= 0) return ans;
int res = 0, n = ok ? a[pos] : 9;
for(int i = 0; i <= n; ++i){
if(i == 3 && val == 1) res += dfs(pos-1, (last*10+i)%13, 2, ok && i == n);
else if(val == 2) res += dfs(pos-1, (last*10+i)%13, 2, ok && i == n);
else if(i == 1 && !val) res += dfs(pos-1, (last*10+i)%13, 1, ok && i == n);
else if(i == 1) res += dfs(pos-1, (last*10+i)%13, 1, ok && i == n);
else res += dfs(pos-1, (last*10+i)%13, 0, ok && i == n);
}
if(!ok) ans = res;
return res;
}
int solve(int n){
int len = 0;
while(n){
a[++len] = n % 10;
n /= 10;
}
return dfs(len, 0, 0, true);
}
int main(){
memset(dp, -1, sizeof dp);
while(scanf("%d", &n) == 1){
printf("%d
", solve(n));
}
return 0;
}