题意:给定上一个 n * m的矩阵,你的出发点是 F,你初始有一个电量,每走一步就会少1,如果遇到G,那么就会加满,每个G只能第一次使用,问你把所有的Y都经过,初始电量最少是多少。
析:首先先预处理每个F,G,Y的最短距离,用 bfs 可以实现,然后再二分电量,进行判断,在进行判断时,dp[s][i] 表示已经走点的状态是s,当前在 i,然后如果能走过所有的就就是true,否则是false。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 15 + 10;
const int maxm = 1e5 + 10;
const int mod = 50007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
char s[maxn][maxn];
vector<P> v;
int dp[(1<<16)+10][20];
int dist[20][20];
int vis[20][20];
int bfs(int ss, int tt){
queue<P> q; ms(vis, -1);
vis[v[ss].fi][v[ss].se] = 0;
q.push(v[ss]);
while(!q.empty()){
P p = q.front(); q.pop();
for(int i = 0; i < 4; ++i){
int x = p.fi + dr[i];
int y = p.se + dc[i];
if(!is_in(x, y) || vis[x][y] != -1 || s[x][y] == 'D') continue;
vis[x][y] = vis[p.fi][p.se] + 1;
P qq = P(x, y);
if(qq == v[tt]) return vis[x][y];
q.push(qq);
}
}
return -1;
}
int start, st;;
bool judge(int mid){
ms(dp, -1);
dp[1][0] = mid;
int all = 1<<v.sz;
for(int i = 0; i < all; ++i)
for(int j = 0; j < v.sz; ++j){
if(dp[i][j] >= 0 && (i & st) == st) return true;
if(dp[i][j] <= 0) continue;
for(int k = 0; k < v.sz; ++k){
if(dist[j][k] == -1 || i&1<<k) continue;
int &ans = dp[i|1<<k][k];
ans = max(ans, dp[i][j] - dist[j][k]);
if(ans >= 0 && s[v[k].fi][v[k].se] == 'G') ans = mid;
if(ans >= 0 && ((i|1<<k)&st) == st) return true;
}
}
return false;
}
int main(){
while(scanf("%d %d", &n, &m) == 2 && n+m){
v.clear(); st = 0;
for(int i = 0; i < n; ++i){
scanf("%s", s[i]);
for(int j = 0; j < m; ++j){
if(s[i][j] == 'D' || s[i][j] == 'S') continue;
if(s[i][j] == 'F') start = v.sz;
else if(s[i][j] == 'Y') st |= 1<<v.sz;
v.push_back(P(i, j));
}
}
if(s[v[0].fi][v[0].se] == 'Y') st ^= 1|1<<start;
swap(v[start], v[0]);
for(int i = 0; i < v.sz; ++i)
for(int j = i+1; j < v.sz; ++j)
dist[i][j] = dist[j][i] = bfs(i, j);
int l = 0, r = n * m;
if(!judge(r)){ puts("-1"); continue; }
while(l <= r){
int m = l + r >> 1;
if(judge(m)) r = m - 1;
else l = m + 1;
}
printf("%d
", l);
}
return 0;
}