zoukankan      html  css  js  c++  java
  • HDU 5656 CA Loves GCD (容斥)

    题意:给定一个数组,每次他会从中选出若干个(至少一个数),求出所有数的GCD然后放回去,为了使自己不会无聊,会把每种不同的选法都选一遍,想知道他得到的所有GCD的和是多少。

    析:枚举gcd,然后求每个gcd产生的个数,这里要使用容斥定理,f[i]表示的是 gcd 是 i 的个数,g[i] 表示的是 gcd 是 i 倍数的,f[i] = g[i] - f[j] (i|j)。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e3 + 5;
    const int maxm = 2e4 + 10;
    const LL mod = 100000007;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    int a[maxn], len[maxn];
    int f[maxn];
    
    int main(){
      f[0] = 1;
      for(int i = 1; i < maxn; ++i)  f[i] = (f[i-1]<<1) % mod;
      int T;  cin >> T;
      while(T--){
        scanf("%d", &n);
        int mmax = 1;
        ms(a, 0);  ms(len, 0);
        for(int i = 0; i < n; ++i){
          int x;  scanf("%d", &x);
          ++a[x];  mmax = max(mmax, x);
        }
        for(int i = 1; i <= mmax; ++i)
          for(int j = i; j <= mmax; j += i)
            len[i] += a[j];
        LL ans = 0;
        for(int i = mmax; i; --i){
          a[i] = f[len[i]] - 1;
          for(int j = i + i; j <= mmax; j += i)
            a[i] -= a[j];
          ans = (ans + (LL)a[i] * i) % mod;
        }
        printf("%lld
    ", (ans+mod)%mod);
      }
      return 0;
    }
    

      

  • 相关阅读:
    神经网络-FPN 19
    机器学习
    神经网络-DenseNet 18
    神经网路骨架:各自的特点统计
    转载:一步一步制作根文件系统
    设计模式博客
    【转】PowerPC平台linux设备移植
    【收藏】自己动手写编译器、连接器
    查看pthread线程库中锁的持有者方法
    【转】深入 Linux 的进程优先级
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/8408851.html
Copyright © 2011-2022 走看看