Problem:
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
思路:
Solution 1.1 (C++):
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
for (int i = 1; i <= m; ++i) dp[i][0] = i;
for (int j = 1; j <= n; ++j) dp[0][j] = j;
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1;
}
}
return dp[m][n];
}
性能:
Runtime: 28 ms Memory Usage: 11.2 MB
Solution 1.2 (C++):
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<int> pre(n+1, 0), cur(n+1, 0);
for (int j = 1; j <= n; ++j) pre[j] = j;
for (int i = 1; i <= m; ++i) {
cur[0] = i;
for (int j = 1; j <= n; ++j) {
if (word1[i-1] == word2[j-1]) cur[j] = pre[j-1];
else
cur[j] = min(pre[j-1], min(cur[j-1], pre[j])) + 1;
//dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1;
}
fill(pre.begin(), pre.end(), 0);
swap(pre, cur);
}
return pre[n];
}
性能:
Runtime: 8 ms Memory Usage: 8.7 MB