zoukankan      html  css  js  c++  java
  • 算法 之 红黑平衡二叉树

    打趴下就不要爬起来了,反正还是会被打到趴下。

    定义:

    红黑树是一种自平衡二叉查找树,是计算机科学领域中的一种数据结构,典型的用途是实现关联数组,存储有序的数据。
    它是在1972年由Rudolf Bayer发明的,别称"对称二叉B树",它现代的名字由 Leo J. Guibas 和 Robert Sedgewick 于1978年写的一篇论文中获得的。
    它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的。它可以在O(logn)时间内做查找,插入和删除,这里的n是树的结点个数。

    比较:

    红黑树和平衡二叉树(AVL树)都是二叉查找树的变体,但红黑树的统计性能要好于AVL树。
    因为,AVL树是严格维持平衡的,红黑树是黑平衡的。
    维持平衡需要额外的操作,这就加大了数据结构的时间复杂度,所以红黑树可以看作是二叉搜索树和AVL树的一个折中,维持平衡的同时也不需要花太多时间维护数据结构的性质。

    特点:

    • 每个结点是黑色或者红色。
    • 根结点是黑色。
    • 每个叶子结点(NIL)是黑色。 [注意:这里叶子结点,是指为空(NIL或NULL)的叶子结点!]
    • 如果一个结点是红色的,则它的子结点必须是黑色的。
    • 每个结点到叶子结点NIL所经过的黑色结点的个数一样的。[确保没有一条路径会比其他路径长出俩倍,所以红黑树是相对接近平衡的二叉树的!]

    基本操作:

    红黑树的基本操作是添加、删除。
    在对红黑树进行添加或删除之后,都会用到旋转方法。
    为什么呢?道理很简单,添加或删除红黑树中的结点之后,红黑树的结构就发生了变化,可能不满足红黑树的5条性质,也就不再是一颗红黑树了,而是一颗普通的树。
    而通过旋转和变色,可以使这颗树重新成为红黑树。简单点说,旋转和变色的目的是让树保持红黑树的特性:自平衡二叉树。

    旋转包括两种:左旋 和 右旋
    左旋:以某个结点作为支点(旋转结点),其右子结点变为旋转结点的父结点,右子结点的左子结点变为旋转结点的右子结点,其左子结点保持不变。如图2。
    右旋:以某个结点作为支点(旋转结点),其左子结点变为旋转结点的父结点,左子结点的右子结点变为旋转结点的左子结点,其右子结点保持不变。如图3。
    变色:结点的颜色由红变黑或由黑变红。

    就作个简单的介绍,要想深入了解的话,还得靠你们自己去研究研究。

  • 相关阅读:
    XAF中实现Combox属性编辑(官方)
    XAF 支持多数据库
    XAF 如何使用复合主键和复合外键
    如何禁止双击ListView记录显示DetailView?
    XAF中主从列表模式下获取当前主对象实例
    使用一个非持久字段PersistentAlias
    XAF 如何将文件存储在文件系统中而不是数据库中
    XAF中如何制作弹出窗体选择数据到ListView列表
    XAF 如何用其他线程更新对象
    XPO中 聚合函数的使用(Count,Max,Sum,Min)
  • 原文地址:https://www.cnblogs.com/fangdada/p/15160048.html
Copyright © 2011-2022 走看看