zoukankan      html  css  js  c++  java
  • 多项式ADT(数组存储多项式系数和指数)笔记

    fatal.h

    #include <stdio.h>
    #include <stdlib.h>
    
    #define Error( Str )        FatalError( Str )
    #define FatalError( Str )   fprintf( stderr, "%s
    ", Str ), exit( 1 )
    

    poly.c

    /* This code doesn't really do much */
    /* Thus I haven't bothered testing it */
    
    #include "fatal.h"
    
    #define MaxDegree 100 // 幂的最大次数是100
    
    static int
    Max(int A, int B)
    {
        return A > B ? A : B;
    }
    
    /* START: fig3_18.txt */
    typedef struct
    {
        int CoeffArray[MaxDegree + 1]; // 系数数组,这里定义了数组是很大的,所以下面要单独用一个HighPower来存最高次幂
        int HighPower; // 高次幂
    } *Polynomial;
    /* END */
    
    /* START: fig3_19.txt */
    // 多项式初始化为零
    void
    ZeroPolynomial(Polynomial Poly)
    {
        int i;
    
        for (i = 0; i <= MaxDegree; i++)
            Poly->CoeffArray[i] = 0;
        Poly->HighPower = 0;
    }
    /* END */
    
    /* START: fig3_20.txt */
    void
    AddPolynomial(const Polynomial Poly1, const Polynomial Poly2,
                  Polynomial PolySum)
    {
        int i;
    
        ZeroPolynomial(PolySum);
        PolySum->HighPower = Max(Poly1->HighPower,
                                 Poly2->HighPower);
    
        for (i = PolySum->HighPower; i >= 0; i--)
            PolySum->CoeffArray[i] = Poly1->CoeffArray[i]
                                     + Poly2->CoeffArray[i];
    }
    /* END */
    
    /* START: fig3_21.txt */
    void
    MultPolynomial(const Polynomial Poly1,
                   const Polynomial Poly2, Polynomial PolyProd)
    {
        int i, j;
    
        ZeroPolynomial(PolyProd);
        PolyProd->HighPower = Poly1->HighPower + Poly2->HighPower;
    
        if (PolyProd->HighPower > MaxDegree)
            Error("Exceeded array size");
        else
            for (i = 0; i <= Poly1->HighPower; i++)
                for (j = 0; j <= Poly2->HighPower; j++)
                    PolyProd->CoeffArray[i + j] +=
                            Poly1->CoeffArray[i] *
                            Poly2->CoeffArray[j];
    }
    /* END */
    
    #if 0
    /* START: fig3_23.txt */
            typedef struct Node *PtrToNode;
    
            struct Node
            {
                int Coefficient; // 系数
                int Exponent; // 指数
                PtrToNode Next;
            };
    
            typedef PtrToNode Polynomial;  /* Nodes sorted by exponent */ // 按指数排序的节点
    /* END */
    #endif
    
    void
    PrintPoly(const Polynomial Q)
    {
        int i;
    
        for (i = Q->HighPower; i > 0; i--)
            printf("%dx^%d + ", Q->CoeffArray[i], i); // CoeffArray[i]代表系数,i代表指数
        printf("%d
    ", Q->CoeffArray[0]);
    }
    
    // 测试函数
    int main()
    {
        Polynomial P, Q;
    
        P = malloc(sizeof(*P));
        Q = malloc(sizeof(*Q));
    
        P->HighPower = 1;
        P->CoeffArray[0] = 1;
        P->CoeffArray[1] = 1; // P = x + 1
        MultPolynomial(P, P, Q); // Q = P * P = x^2 + 2x + 1
        MultPolynomial(Q, Q, P); // P = Q * Q = x^4 + 4x^3 + 6x^2 + 4x + 1
        AddPolynomial(P, P, Q); // Q = P + P = 2x^4 + 8x^3 + 12x^2 + 8x^1 + 2
        // 打印结果
        PrintPoly(Q);
    
        return 0;
    }
    

    输出结果:

    注:书中页码:P39

  • 相关阅读:
    魔数,常见魔数
    正则表达式 —— 括号与特殊字符
    串行总线 —— I2C、UART、SPI
    OpenCV-Python sift/surf特征匹配与显示
    OpenCV-Python 边缘检测
    python中zip()函数基本用法
    OpenCv-Python 图像滤波
    获取WMI硬件清单
    PowerShell查询sql server
    别名的应用(New-Alias)
  • 原文地址:https://www.cnblogs.com/fanlumaster/p/13661339.html
Copyright © 2011-2022 走看看