zoukankan      html  css  js  c++  java
  • RS,7th,July-Tutorials

    • Link:https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
    1. Collabrative Filtering 

    I guess, it is more about recommend things that people similar to you likes

    while content-based relies on the content of the stuff, the features of the stuff itself

       2.Similarity:

    user-similarity and item-similarity are m by m marix and n by n matrix, (suppose there are m users and n items)

       3.About this :"

    These two users could have a very similar taste but treat the rating system differently.

    "

    In the formula of user-based CF:(as follows)

    It includes the mean value of the previous rating .This is to solve the rating problem in different rating standard patially,but it cannot solve the problem in similarity... Because in our similarity rating system, users who are actuallly similar are classified as unsimilar.

    I think the same problem exists in item-based CF. The personal differences in how they give the points. (I wonder whether here is something we can do in this? Maybe build model about the Gaussian distribution people rate things, and put some resarch in it ? )

        4.Cold-start problem

    Memory-based CF cannot solve any cold-start problem, it relies on similarity which requires existing data.

        5.something about the split of data :

    Notice that it only diveide the data into two parts randomly, in test data and train data, there are the same number of users and movies! (Misunderstood the spilit in the first place)

        6.Model-based problem 

        To be continued

     
  • 相关阅读:
    上古神器之Vim编辑器
    Git
    Git
    php之IP
    PHP常见错误汇总
    Redis教程(Windows)
    如何使用RSS
    (转)Spring Boot干货系列:(三)启动原理解析
    (转)Maven创建webapp项目无法修改web版本的问题
    (转)图文详解MyEclipse中新建Maven webapp项目的步骤
  • 原文地址:https://www.cnblogs.com/fassy/p/7132241.html
Copyright © 2011-2022 走看看