zoukankan      html  css  js  c++  java
  • RS,7th,July-Tutorials

    • Link:https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
    1. Collabrative Filtering 

    I guess, it is more about recommend things that people similar to you likes

    while content-based relies on the content of the stuff, the features of the stuff itself

       2.Similarity:

    user-similarity and item-similarity are m by m marix and n by n matrix, (suppose there are m users and n items)

       3.About this :"

    These two users could have a very similar taste but treat the rating system differently.

    "

    In the formula of user-based CF:(as follows)

    It includes the mean value of the previous rating .This is to solve the rating problem in different rating standard patially,but it cannot solve the problem in similarity... Because in our similarity rating system, users who are actuallly similar are classified as unsimilar.

    I think the same problem exists in item-based CF. The personal differences in how they give the points. (I wonder whether here is something we can do in this? Maybe build model about the Gaussian distribution people rate things, and put some resarch in it ? )

        4.Cold-start problem

    Memory-based CF cannot solve any cold-start problem, it relies on similarity which requires existing data.

        5.something about the split of data :

    Notice that it only diveide the data into two parts randomly, in test data and train data, there are the same number of users and movies! (Misunderstood the spilit in the first place)

        6.Model-based problem 

        To be continued

     
  • 相关阅读:
    acm 总结之大数加法
    hdu 1004
    hdu 1887
    hdu 2007
    hdu 2004
    ACM总结之 A+B problem 总结
    nyoj_42_一笔画问题_201403181935
    最短路径--Floyd算法
    最短路径—Dijkstra算法
    nyoj_114_某种序列_201403161700
  • 原文地址:https://www.cnblogs.com/fassy/p/7132241.html
Copyright © 2011-2022 走看看