event_base_loop函数流程图
Libevent的事件主循环主要是通过event_base_loop ()函数完成的,其主要操作如下面的流程图所示,event_base_loop所作的就是持续执行下面的循环。
int event_base_loop(struct event_base *base, int flags) { const struct eventop *evsel = base->evsel;//多路复用IO struct timeval tv; struct timeval *tv_p; int res, done, retval = 0; EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (base->running_loop) {//检测event_base_loop是否已经运行,每个event_base只有一个event_base_loop event_warnx("%s: reentrant invocation. Only one event_base_loop" " can run on each event_base at once.", __func__); EVBASE_RELEASE_LOCK(base, th_base_lock); return -1; } base->running_loop = 1; clear_time_cache(base);//清空时间缓存 if (base->sig.ev_signal_added && base->sig.ev_n_signals_added) evsig_set_base(base);// evsignal_base是全局变量,在处理signal时,用于指名signal所属的event_base实例 done = 0; #ifndef _EVENT_DISABLE_THREAD_SUPPORT base->th_owner_id = EVTHREAD_GET_ID(); #endif base->event_gotterm = base->event_break = 0; while (!done) {// 事件主循环 base->event_continue = 0; if (base->event_gotterm) { break;// 查看是否需要跳出循环,程序可以调用event_loopexit_cb()设置event_gotterm标记 } if (base->event_break) { break;// 调用event_base_loopbreak()设置event_break标记 } // 校正系统时间,如果系统使用的是非MONOTONIC时间,用户可能会向后调整了系统时间 // 在timeout_correct函数里,比较last wait time和当前时间,如果当前时间< last wait time // 表明时间有问题,这是需要更新timer_heap中所有定时事件的超时时间。 timeout_correct(base, &tv); // 根据timer heap中事件的最小超时时间,计算系统I/O demultiplexer的最大等待时间 tv_p = &tv; if (!N_ACTIVE_CALLBACKS(base) && !(flags & EVLOOP_NONBLOCK)) { timeout_next(base, &tv_p); } else { evutil_timerclear(&tv); } // 如果当前没有注册事件,就退出 if (!event_haveevents(base) && !N_ACTIVE_CALLBACKS(base)) { event_debug(("%s: no events registered.", __func__)); retval = 1; goto done; } gettime(base, &base->event_tv); clear_time_cache(base); // 调用系统I/O demultiplexer等待就绪I/O events,可能是epoll_wait,或者select等; // 在evsel->dispatch()中,会把就绪signal event、I/O event插入到激活链表中 res = evsel->dispatch(base, tv_p); if (res == -1) { event_debug(("%s: dispatch returned unsuccessfully.", __func__)); retval = -1; goto done; } update_time_cache(base); timeout_process(base); // 调用event_process_active()处理激活链表中的就绪event,调用其回调函数执行事件处理 // 该函数会寻找最高优先级(priority值越小优先级越高)的激活事件链表, // 然后处理链表中的所有就绪事件; // 因此低优先级的就绪事件可能得不到及时处理; if (N_ACTIVE_CALLBACKS(base)) { int n = event_process_active(base); if ((flags & EVLOOP_ONCE) && N_ACTIVE_CALLBACKS(base) == 0 && n != 0) done = 1; } else if (flags & EVLOOP_NONBLOCK) done = 1; } event_debug(("%s: asked to terminate loop.", __func__)); done: clear_time_cache(base); base->running_loop = 0; EVBASE_RELEASE_LOCK(base, th_base_lock); return (retval); }
I/O和Timer事件的统一
Libevent将Timer和Signal事件都统一到了系统的I/O 的demultiplex机制中了,相信读者从上面的流程和代码中也能窥出一斑了,下面就再啰嗦一次了。
首先将Timer事件融合到系统I/O多路复用机制中,还是相当清晰的,因为系统的I/O机制像select()和 epoll_wait()都允许程序制定一个最大等待时间(也称为最大超时时间)timeout,即使没有I/O事件发生,它们也保证能在timeout时间内返回。
那么根据所有Timer事件的最小超时时间来设置系统I/O的timeout时间;当系统I/O返回时,再激活所有就绪的Timer事件就可以了,这样就能将Timer事件完美的融合到系统的I/O机制中了。
这是在Reactor和Proactor模式(主动器模式,比如Windows上的IOCP)中处理Timer事件的经典方法了,ACE采用的也是这种方法,大家可以参考POSA vol2书中的Reactor模式一节。
堆是一种经典的数据结构,向堆中插入、删除元素时间复杂度都是O(lgN),N为堆中元素的个数,而获取最小key值(小根堆)的复杂度为O(1);因此变成了管理Timer事件的绝佳人选(当然是非唯一的),libevent就是采用的堆结构。
I/O和Signal事件的统一
Signal是异步事件的经典事例,将Signal事件统一到系统的I/O多路复用中就不像Timer事件那么自然了,Signal事件的出现对于进程来讲是完全随机的,进程不能只是测试一个变量来判别是否发生了一个信号,而是必须告诉“内核“在此信号发生时,请执行如下的操作”。
如果当Signal发生时,并不立即调用event的callback函数处理信号,而是设法通知系统的I/O机制,让其返回,然后再统一和I/O事件以及Timer一起处理,不就可以了嘛。是的,这也是libevent中使用的方法。
问题的核心在于,当Signal发生时,如何通知系统的I/O多路复用机制,比如使用pipe。
from :Libevent学习