zoukankan      html  css  js  c++  java
  • 「CTS2019 | CTSC2019」随机立方体

    「CTS2019 | CTSC2019」随机立方体

    传送门

    Loj

    题解

    首先看到这个恰好(k)个可以很轻松的想到容斥,这个东西就是一个二项式反演.

    接着我们思考如何求恰好(i)个合法的个数?设(dp_i)为所求,

    [f_i=prod_{j=0}^{i-1}(n-j)(m-j)(l-j) \ g_i=n imes m imes l-(n-i) imes (m-i) imes (l-i) \ h_i=h_{i-1} imes frac{(g_i-1)!}{g_{i-1}!} \ egin{align} dp_i&=inom{n imes m imes l}{g_i} imes f_i imes h_i imes (n imes m imes l-g_i)! \ &=(n imes m imes l)! imes f_i imes prod_{j=0}^{i}frac{1}{g_j!}prod_{j=1}^i(g_j-1) \ &=(n imes m imes l)! imes f_i imes prod_{j=1}^{i}frac{1}{g_j} end{align} ]

    具体解释就是(f_i)表示恰好(i)个的放置方案数,(g_i)表示可以放置的位置的数量,(h_i)表示极大数中数放置的可能方案数.

    这个求的是方案数,把((n imes m imes l)!)去掉就是概率了,然后直接对(dp_i)二项式反演即可.注意最后那个分数可以线性求逆元求.

    代码

    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<map>
    #include<iostream>
    using namespace std;
    #define ll long long
    #define REP(a,b,c) for(int a=b;a<=c;a++)
    #define re register
    #define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
    typedef pair<int,int> pii;
    #define mp make_pair
    inline int gi()
    {
    	int f=1,sum=0;char ch=getchar();
    	while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
    	return f*sum;
    }
    const int N=5000010,Mod=998244353;
    int qpow(int a,int b){int ret=1;while(b){if(b&1)ret=1ll*ret*a%Mod;b>>=1;a=1ll*a*a%Mod;}return ret;}
    int n,m,l,k,f[N],g[N],ifac[N],M,dp[N],inv[N],fac[N];
    void init()
    {
    	fac[0]=fac[1]=ifac[0]=ifac[1]=inv[0]=inv[1]=1;
    	for(int i=2;i<=5000000;i++)
    		fac[i]=1ll*fac[i-1]*i%Mod,
    			inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod,
    			ifac[i]=1ll*ifac[i-1]*inv[i]%Mod;
    }
    int C(int n,int m){return 1ll*fac[n]*ifac[m]%Mod*ifac[n-m]%Mod;}
    int main()
    {
    	int T=gi();init();
    	while(T--)
    	{
    		n=gi();m=gi();l=gi();k=gi();f[0]=ifac[0]=1;
    		M=min(n,min(m,l));
    		if(M<k){puts("0");continue;}
    		for(int i=0;i<M;i++)f[i+1]=1ll*f[i]*(n-i)%Mod*(m-i)%Mod*(l-i)%Mod;
    		for(int i=1;i<=M;i++)g[i]=(1ll*n*m%Mod*l%Mod-1ll*(n-i)*(m-i)%Mod*(l-i)%Mod+Mod)%Mod;
    		int now=1;
    		for(int i=1;i<=M;i++)now=1ll*now*g[i]%Mod;now=qpow(now,Mod-2);
    		for(int i=M;i;i--){int pre=g[i];g[i]=now;now=1ll*now*pre%Mod;}
    		for(int i=1;i<=M;i++)dp[i]=1ll*f[i]*g[i]%Mod;
    		int ans=0;
    		for(int i=k,f=1;i<=M;i++,f=Mod-f)
    			ans=(ans+1ll*f*C(i,k)%Mod*dp[i]%Mod)%Mod;
    		printf("%d
    ",ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    TPM Key相关概念
    (转)eclipse报错及解决说明 "XX cannot be resolved to a type "
    (转)Bat Command
    (转)Linux下查看文件和文件夹大小 删除日志
    (转)每天一个linux命令(50):crontab命令
    (转)Vi命令详解
    (转)maven打包时跳过测试
    (转)mybatis常用jdbcType数据类型
    (转)MyBatis在插入的数据有空值时,可能为空的字段都要设置jdbcType
    (转)mybatis:动态SQL
  • 原文地址:https://www.cnblogs.com/fexuile/p/12878256.html
Copyright © 2011-2022 走看看