zoukankan      html  css  js  c++  java
  • 感知器实现鸢尾花分类

    import tensorflow as tf
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn import preprocessing
    
    
    def init_weights(shape):
        return tf.Variable(tf.random_normal(shape, stddev=0.01))
    
    
    # 创建分割线
    def plotLine(slope, bias):
        x = np.arange(-3, 3, 0.5)
        y = x * slope + bias
        plt.plot(x, y)
    
    
    if __name__ == "__main__":
        # 导入数据
        df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)
        features = df.iloc[1:len(df.index), [0, 2]].values
        labels = df.iloc[1:len(df.index), 4].values
    
        # 调节数据
        scaler = preprocessing.StandardScaler().fit(features)
        features_standard = scaler.transform(features)
    
        # 选取了两种花的两类特征
        for index, label in enumerate(labels):
            if label == "Iris-setosa":
                plt.scatter(features[index, 0], features[index, 1], color='red', marker='o', label='setosa')
            else:
                plt.scatter(features[index, 0], features[index, 1], color='blue', marker='x', label='versicolor')
        plt.xlabel('petal len')
        plt.ylabel('sepal len')
        plt.show()
    
        # 转换标签
        labels = np.where(labels == "Iris-setosa", 1, -1)
    
        # 使用sklearn类库快速分割数据集
        features_train, features_test, labels_train, labels_test = 
            train_test_split(features_standard, labels, test_size=0.33)
    
        X = tf.placeholder(tf.float32)
        Y = tf.placeholder(tf.float32)
    
        w = init_weights([2, 1])
        b = tf.Variable(tf.zeros([1, 1]))
    
        predict_Y = tf.sign(tf.matmul(X, w) + b)
    
        loss = tf.reduce_mean(tf.square(predict_Y - labels_train))
    
        optimizer = tf.train.GradientDescentOptimizer(0.01)
        train_step = optimizer.minimize(loss)
    
        init = tf.global_variables_initializer()
        sess = tf.Session()
        sess.run(init)
    
        # start train
        for i in range(1000):
            sess.run(train_step, feed_dict={X: features_train, Y: labels_train})
    
        w1 = sess.run(w).flatten()[0]
        w2 = sess.run(w).flatten()[1]
        b = sess.run(b).flatten()
    
        for index, label in enumerate(labels_test):
            if label == 1:
                plt.scatter(features_test[index, 0], features_test[index, 1], color='red', marker='o', label='setosa')
            else:
                plt.scatter(features_test[index, 0], features_test[index, 1], color='blue', marker='x', label='versicolor')
    
        plt.xlabel('petal len')
        plt.ylabel('sepal len')
        plotLine(-w1 / w2, -b / w2)
        plt.show()
    
    

  • 相关阅读:
    SqlLite
    C# Sqlite 序列
    C#生成条形码 Code128算法
    【Ogre Beginner Guide】第二章 OGRE场景绘图
    【Ogre Beginner Guider】第一章 配置OGRE
    用户操作体验设计——小感触
    rails 调试
    mac下安装和使用brew
    如何使用 CCache 进行 Cocos2d-x 编译加速
    AndroidStudio使用和问题记录
  • 原文地址:https://www.cnblogs.com/flylinmu/p/10290756.html
Copyright © 2011-2022 走看看